STAT 240 - Fall 2025
\[ \begin{aligned} \text{Point estimate} & = \bar x \\ \\ \text{Margin of error} & = t_{\alpha/2} \ \frac{s}{\sqrt n} \\ \end{aligned} \]
\[\bar x \pm t_{\alpha/2} \ \frac{s}{\sqrt n}\]
\[ \begin{aligned} \bar{x} = 460.62 \\ s_x = 205.77 \\ n = 4679 \\ \end{aligned} \]
\[ \begin{aligned} \bar{x} = 460.62 \\ s_x = 165.38 \\ n = 64 \\ \end{aligned} \]
Why have I never really talked about these?
Proportions are important
Difficult for newer stats students
Easy once you know a little bit
All the rules are “different” (but not really)
\[\text{Point estimate} \pm \text{Margin of error}\]
\[ \hat{p} = \frac{\text{TDS} > 500 \text{ mg/L}}{\text{Total n of TDS}} \]
\[ \hat{p} = \frac{1267}{4679} \]
\[ \begin{aligned} \text{Point estimate} & = \hat{p} \\ \\ \text{Margin of error} & = z_{\alpha/2} \ \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\ \end{aligned} \]
\[ \hat{p} \pm z_{\alpha/2} \ \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \]
\[ \begin{aligned} \hat{p} = 0.271 \\ n = 4679 \\ \end{aligned} \]
\[ \begin{aligned} \hat{p} = 0.297 \\ n = 64 \\ \end{aligned} \]
\[ \hat{p} \sim N(\mu_{\hat{p}},\sigma^2_{\hat{p}}) \]
\[ n\hat{p} \ge 10 \text{ or } n(1-\hat{p}) \ge 10 \]
\[ \begin{aligned} \hat{p} = 0.297 \\ n = 64 \\ \end{aligned} \]
What does our model tell us about the data?
Is our model and its assumptions reasonable?
What decisions can we make given the results we have?
\[ \begin{aligned} \text{MSE}\ =& \ \frac{\text{RSS}}{n-2} \\ SE(\hat\beta_0)= & \ \sqrt{\text{MSE}\left( \frac{1}{n}+\frac{\bar x^2}{\sum_{i=1}^n(x_i+\bar x)^2}\right)}\\ \\ SE(\hat \beta_1)= & \ \sqrt{\frac{\text{MSE}}{\sum_{i=1}^n(x_i-\bar x)^2}}\\ \end{aligned} \]
\[ \begin{aligned} CI_{\hat \beta_0}= & \ \hat \beta_0 \pm t^* \times SE(\hat \beta_0) \\ \\ CI_{\hat \beta_1}= & \ \hat \beta_1 \pm t^* \times SE(\hat \beta_1) \\ \end{aligned} \]
Call:
lm(formula = Y ~ X)
Residuals:
1 2 3
-0.54 1.08 -0.54
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3400 2.0205 -0.168 0.894
X 1.0400 0.9353 1.112 0.466
Residual standard error: 1.323 on 1 degrees of freedom
Multiple R-squared: 0.5529, Adjusted R-squared: 0.1057
F-statistic: 1.236 on 1 and 1 DF, p-value: 0.4663
\[ CI_{\hat \beta_0}= \begin{cases} -0.34- 12.706\times 2.0205 \\ -0.34 + 12.706 \times 2.0205 \end{cases} \\ \]
\[ CI_{\hat \beta_1}= \begin{cases} 1.04- 12.706\times 0.9353\\ 1.04 + 12.706 \times 0.9353 \end{cases} \]
\[ \begin{aligned} CI_{\hat \beta_0}= & \ (-26.0125,25.3325)\\ \\ CI_{\hat \beta_1}= & \ (-10.8439,12.9239)\\ \end{aligned} \]
Call:
lm(formula = Y ~ X)
Residuals:
Min 1Q Median 3Q Max
-180.75 -101.87 -35.19 51.47 798.13
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 63396.17 35849.36 1.768 0.0819 .
X -31.12 17.73 -1.755 0.0841 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 162.7 on 62 degrees of freedom
Multiple R-squared: 0.04735, Adjusted R-squared: 0.03198
F-statistic: 3.081 on 1 and 62 DF, p-value: 0.08414
\[ 63396.17 \pm 1.96 \times 35849 = \]
\[ -31.12 \pm 1.96 \times 17.73 \]
2.5 % 97.5 %
(Intercept) -8265.67415 1.350580e+05
X -66.55953 4.318761e+00