Interval Estimation
All models are wrong, but some are useful - George Box
Point Estimates
\(\bar{x}\), \(s^2\), \(\hat{\beta_0}\)
- We’ve only calculated these so far
They’re all wrong estimates
How old is the universe?
How old is the universe?
How old is the universe?
Frequentist
Methods using the perspective that the probability of an event is defined as the relative frequency of that event’s occurence across infinite trials.
Empirical probability
“Data driven”
Central Limit Theorem
Simple in application
Bayesian
Methods using the perspective that the probability of an event is the result of comparing the likelihood and prior knowledge of the event with the observed evidence.
Linear Regression
\[
\begin{aligned}
y = \beta_0 + \beta_1x +\epsilon \\
\epsilon \sim N(0,\sigma^2)
\end{aligned}
\]
- Since \(\mathbb{E}(\epsilon) = 0\):
\[
y \sim N(\beta_0+\beta_1x,\sigma^2)
\]
Linear Regression
\[
\begin{aligned}
y \sim N(\beta_0+\beta_1x,\sigma^2) \\
\beta_0 \sim N(0,\sigma^2_{\beta_0}) \\
\beta_1 \sim N(0,\sigma^2_{\beta_1}) \\
\sigma^2 \sim \text{inv-Gamma}(q,r)
\end{aligned}
\]
Bayes’ Rule
\[\text{Posterior}\ = \ \frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}\]
\[P(A|B)=\frac{P(B|A)P(A)}{P(B|A)P(A)+P(B|A^c)P(A^c)}\]
Interpreting Intervals
Confidence Intervals
Credible Intervals
Applying Distribution Theory
Sampling Distributions
Sampling Distributions
Intervals
Given \(\bar{x} = 53.17\), \(s=17.127\), and \(n=10\), calculate the \(95\%\) interval of deer body weights.
\(95\%\) z-interval: \[P(-z_0 < Z < z_0)=\ 0.95\]
Intervals
\[
\bar{x} \sim N(\mu,\frac{\sigma^2}{n})
\]
Intervals
\[
z = \frac{x - \mu}{\sigma}
\]
- This still needs population parameters
Pivots
Pivotal Quantity (Pivot): Any function who’s probability distribution does not rely of the population parameters of a given random variable.
\[t^*= \frac{x-\bar x}{s / \sqrt n}\]
t-Distribution
t-Pivot
\[T=\frac{\bar x - \mu}{s / \sqrt n}\]
\[P(-t_0 < T < t_0)=\ 0.95\]
\[
\begin{aligned}
P(-t_0 < T < t_0) =\ 0.95 \\
P(-t_0 < \frac{\bar x-\mu}{s / \sqrt n} < t_0) =\ 0.95 \\
P(-t_0 \ \frac{s}{\sqrt n} < \bar x-\mu < t_0 \ \frac{s}{\sqrt n}) =\ 0.95 \\
P(\bar x-t_0 \ \frac{s}{\sqrt n} < \mu < \bar x+t_0 \ \frac{s}{\sqrt n}) =\ 0.95 \\
\end{aligned}
\]
Confidence Intervals
\[
\begin{aligned}
0.99= & \ 1-\alpha \\
\\
\alpha= & \ 0.01 \\
\\
\alpha/2 = & 0.005
\end{aligned}
\]
\[\bar x \pm t_{\alpha/2} \ \frac{s}{\sqrt n}\]
Confidence Intervals
\[
\begin{aligned}
\text{Point estimate} & = \bar x \\
\\
\text{Margin of error} & = t_{\alpha/2} \ \frac{s}{\sqrt n} \\
\end{aligned}
\]
\[\text{Point estimate} \pm \text{Margin of error}\]
t-table
| 7 |
0.000 |
0.711 |
0.896 |
1.119 |
1.415 |
1.895 |
2.365 |
2.998 |
4.785 |
| 8 |
0.000 |
0.706 |
0.889 |
1.108 |
1.397 |
1.860 |
2.306 |
2.896 |
4.501 |
| 9 |
0.000 |
0.703 |
0.883 |
1.100 |
1.383 |
1.833 |
2.262 |
2.821 |
4.297 |
| 10 |
0.000 |
0.700 |
0.879 |
1.093 |
1.372 |
1.812 |
2.228 |
2.764 |
4.144 |
Sample Mean Intervals
\[
\begin{aligned}
\text{CI}\ =& \ \bar x \pm t_{\alpha/2} \ \frac{s}{\sqrt n}\\
\\
\text{CI}\ =& \ 53.17 \pm 2.262 \times \frac{17.127}{\sqrt{10}}\\
\\
\text{CI}\ =& \ 53.17 \pm 12.25107 \\
\\
\text{CI}\ =& \ \begin{cases}
53.17 - 12.25107 = 40.91893\\
53.17 + 12.25107 = 65.42107
\end{cases}\\
\\
\text{CI} \ =& \ (40.92,65.42)
\end{aligned}
\]