Linear Regression
STAT 240 - Fall 2025
Least Squares Regression
\[
y_i = \beta_0 + \beta_1x_i + \epsilon_i
\]
Linearity
- We can describe the process with a line
Least Squares Regression
\[
y_i = \beta_0 + \beta_1x_i + \epsilon_i
\]
- Independence in the residuals
\[
\frac{1}{n} \sum_{i=1}^n \epsilon_i = 0
\]
Least Squares Regression
\[
y_i = \beta_0 + \beta_1x_i + \epsilon_i
\]
Linear Regression
\[
\begin{aligned}
y_i = \beta_0 + \beta_1x_i + \epsilon_i \\
\\
\epsilon_i \sim N(0,\sigma^2) \\
\end{aligned}
\]
Everything from before
Normality!
Normality
\[
\epsilon \sim N(0,\sigma^2)
\]
\[
f(x) = \frac{1}{\sqrt{2 \pi \sigma^2}}\exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)
\]
Maximum Likelihood Estimation
\[L(\mu,\sigma^2 | x_1,x_2,...,x_n)=\prod_{i=1}^n\frac{1}{\sqrt{2\pi \sigma^2}}\exp\left({-\frac{(x_i-\mu)^2}{2\sigma^2}}\right)\]
\[
\left(\frac{1}{\sqrt{2\pi \sigma^2}}\right)^n\exp\left({-\frac{(x_i-\mu)^2}{2\sigma^2}}\right)
\]
\[
\hat{\theta} = \arg \max L(\theta | y)
\]
Maximum Likelihood Estimation
\[\frac{\partial\ell(y_i| x_i,\beta_0,\beta_1,\sigma^2)}{\partial\beta_0}=0\]
\[\frac{\partial\ell(y_i| x_i,\beta_0,\beta_1,\sigma^2)}{\partial\beta_1}=0\]
\[\frac{\partial\ell(y_i| x_i,\beta_0,\beta_1,\sigma^2)}{\partial\sigma^2}=0\]
Maximum Likelihood Estimation
\[\hat\beta_0=\bar y - \hat\beta_1 \bar x\]
\[\hat\beta_1 = \frac{\sum_i^n(x_i-\bar x)(y_i-\bar y)}{\sum_i^n(x_i-\bar x)^2}\]
\[\hat \sigma^2 = \frac{1}{n} \sum_{i=1}^n(y_i-(\beta_0+\beta_1x_i))^2\]
Coefficient of Determination
Coefficient of Determination
Coefficient of Determination
Coefficient of Determination
Coefficient of Determination
\[R^2=1-\frac{\text{RSS}}{\text{TSS}}\]
\[\text{RSS}=\sum_{i=1}^n(y_i-\hat y)^2\]
\[\text{TSS}=\sum_{i=1}^n(y_i-\bar y)^2\]
\[R^2=r\times r\]