STAT 240 - Fall 2025
Phenomena: If I give three groups of patients three different blood pressure medications in an experimental trial, what effect do those drugs have? Are they different?
Mechanisms: We know that speed estimates of stars increase linearly with their observed distance from Earth, how can we use this to predict where the edges of the Universe are?
Machine learning: How can we train a machine to recognize whether a recipe is for a dinner or a dessert?
\[ \begin{array}{|c|c|} \hline x & y & \hat y\\ \hline 1 & 0.16 & 0.70\\ \hline 2 & 2.82 & 1.74\\ \hline 3 & 2.24 & 2.78\\ \hline \end{array} \]
\[ \hat y = mx + b \]
\[ m = \frac{1.74-0.70}{1} \]
\[ 0.70 = 1.04(1) + b \]
\[ \hat y = 1.04x - 0.34 \]
What if this is all we have?
\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0.16 \\ \hline 2 & 2.82 \\ \hline 3 & 2.24 \\ \hline \end{array} \]
\[ m = \frac{\sum_i^n(x_i-\bar x)(y_i-\bar y)}{\sum_i^n(x_i-\bar x)^2} \]
\[ b = \bar y - m \bar x \]
\[ \hat y = mx+b \]
\[ y = b + mx \]
\[ \begin{aligned} y & = y \\ m & = \beta_1 \\ x & = x \\ b & = \beta_0 \end{aligned} \]
\[ y = \beta_0 + \beta_1 x \]
\[ \hat \epsilon_i = y_i - \hat y_i \]
\[ y_i = \beta_0 + \beta_1 x_i + \epsilon_i \]
\[ \hat\beta_1 = \frac{\sum_i^n(x_i-\bar x)(y_i-\bar y)}{\sum_i^n(x_i-\bar x)^2} \]
\[ \hat\beta_0=\bar y - \hat\beta_1 \bar x \]
\[ \hat \epsilon_i = y_i - \hat y_i \]
\[ \begin{array}{|c|c|c|} \hline \text{Variable} & \text{Name} & \text{Interpretation} \\ \hline y & \text{Response} & \text{Variable being predicted} \\ \hline x & \text{Predictor} & \text{Variable predicting the response} \\ \hline \beta_0 & \text{Intercept} & \text{Baseline level of response} \\ \hline \beta_1 & \text{Slope} & \text{Effect of predictor on response} \\ \hline \epsilon & \text{Residuals} & \text{Difference between prediction and data} \\ \hline \end{array} \]
\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0.16 \\ \hline 2 & 2.82 \\ \hline 3 & 2.24 \\ \hline \end{array} \]
Besides linearity, that’s an assumed assumption
\[ \begin{array}{|c|c|c|c|} \hline x & y & \hat y & y-\hat y\\ \hline 1 & 0.16 & 0.7 & -0.54\\ \hline 2 & 2.82 & 1.74 & 1.08\\ \hline 3 & 2.24 & 2.78 & -0.54\\ \hline \end{array} \]
\[\bar \epsilon = \frac{\hat \epsilon_1 + \hat \epsilon_2 + \hat \epsilon_3}{3}=\frac{-0.54+1.08-0.54}{3}=\frac{0}{3}=0\]
Mathematical “rules” for optimization
\[ \begin{array}{|c|c|ccc|} \hline x & y & \text{Loss} & \hat \beta_0 & \hat \beta_1\\ \hline 1 & 0.16 & \text{Square} & -0.34 & 1.04 \\ \hline 2 & 2.82 & \text{Absolute} & -0.88 & 1.04\\ \hline 3 & 2.24 & & & \\ \hline \end{array} \]
\[ y_i = \beta_1A_i + \beta_2B_i + \beta_3C_i + \epsilon_i \]
\[ \begin{aligned} A_i = \begin{cases} 1 & \text{if Trt A} \\ 0 & \text{otherwise} \end{cases} \\ B_i = \begin{cases} 1 & \text{if Trt B} \\ 0 & \text{otherwise} \end{cases} \\ C_i = \begin{cases} 1 & \text{if Control} \\ 0 & \text{otherwise} \end{cases} \\ \end{aligned} \]
\[ \hat{y_i} = 199.2A_i + 199.6B_i + 202.0C_i \]
In 1929 Edwin Hubble investigated the relationship between distance and radial velocity of extragalactic nebulae (celestial objects). It was hoped that some knowledge of this relationship might give clues as to the way the universe was formed and what may happen later. His findings revolutionised astronomy and are the source of much research today on the ‘Big Bang’.
We can use the results of regression equations to form “extra” results
In this case the model is:
\[ y = \beta x + \epsilon \]
\[ y = 76.58x \]
\[ \text{Hubble Time} = \beta^{-1} \times 979.708 \]
\[ P_i = \beta_0 + \beta_1C_i + \epsilon_i \]
\(P_i\) will be the “probability of being a dessert” for the \(i\)-th entry.
\(C_i\) will be the calories for the \(i\)-th entry.
\[ \hat{P_i} = 0.18 + 0.000013 C_i + \epsilon_i \]
\[ P_i = \beta_0 + \beta_1C_i + \beta_2F_i+ \epsilon_i \]