Chapter 6.3 - Inference in Observation

“Causal interpretation of the results of regression analysis of observational data is a risky business.
The responsibility rests entirely on the shoulders of the researcher, because the shoulders of the
statistical technique cannot carry such strong inferences.” - Jan de Leeuw

It is at this point that we can finally call ourselves statisticians. Everything prior was an introduction to
principles, methods, and historical context. Statisticians use these as tools but our actual profession involves
taking those methods and pulling statistical inference out of them.

Standard Error

Through the lens of summary statistics, confidence intervals can feel awkward. Many can agree that testing
the efficacy of the method of calculating a sample mean is odd. This is natural since the scientific context
doesn’t make sense until we see a real use case, which is best shown with regression. As we’ve previously
addressed we can place confidence intervals on anything— regression coefficients are no exception.

Recall our favorite n = 3 dataset:
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We calculated a variety of summary statistics in chapter 5 and tossed them in tables:

e y Joi—z|yi—y ]| @—0)wi—9 | (e —7)?
1|0.16 -1 —1.58 1.58 1
2 (282 0 1.08 0 0
31224 1 0.5 0.5 1

We calculated the regression coefficients 8y and f1:
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=1.04

Bo=9— P17 =174—1.04x2=—0.34

We went through even more summary statistics to derive R?:

y [ 9 Ty—9]w—9Ty—9]y—7)?
0.16 | 0.7 | —054 | 02916 | —1.58 | 2.4964
282 | 1.74 | 1.08 | 1.1664 | 1.08 | 1.1664

2.24 1278 | —0.54 | 0.2916 0.50 0.2500
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One of those summary statistics, residual sum of squares, is especially useful for getting an important piece
of the puzzle in constructing regression confidence intervals.

n

RSS = > (i — )’

i=1
RSS = 1.7496

We need to look at the error associated with the parameter estimates themselves. This quantity is referred
to as mean squared error. While we would normally go through all the steps to derive the formula we're
about to use; this specific set of derivations would be fairly advanced to work through. What we should
note is that mean squared error is the result of dividing RSS by the degrees of freedom of the regression

parameters. In this case since we have 2 regression parameters the degrees of freedom are df, = n — 2, which
is a simple enough calculation given that n = 3:

RSS
n—2

MSE =

1.7496
MSE = = 1.7496
3—-2 )

With MSE we have everything we need to “plug-and-chug” the formulas for the standard errors of the
regression coefficients. Standard error is the analog for standard deviation in the S estimates. We’ll once
again skip derivations for the sake of brevity and simplicity.



R / 1 4
SE(Bo) = 1/1.7496 (3 + 2)

SE(By) = V4.0824 = 2.0205

SE(By) = v0.8748 = 0.9353

When referencing the t-table we’ll use df;. to isolate the t* value (sticking to the 95% interval convention of

course):
df 0.500 0.250 0.200 0.150 0.100 0.050 0.025 0.010 0.001
1 0.000 1.000 1.376 1.963 3.078 6.314 12.706 31.821 318.309
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 22.327
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 10.215

The rest follows that same format of Point estimate = Margin of error, except we replace the standard
deviation component with the standard error.

CIBO = BO + ¢ x SE(Bo)

o1 - —0.34 — 12.706 x 2.0205
Bo ] —0.34 + 12.706 x 2.0205

CI; = B+t x SE(B)

~ 1.04 - 12.706 x 0.9353
] 1.04 + 12.706 x 0.9353



CI; = (—26.0125,25.3325)

Cl;

5 = (—10.8439,12.9239)

This is where the inference comes into play. Most statisticians would say two things about these confidence
intervals:

1. The intervals are uninformative

2. The parameters lack significance

The first statement refers to the fact that these intervals are very wide. There’s no hard rule to define when
an interval is too wide. We should instead use our scientific inferential skills here to decide if the intervals
are reasonable or not. A range of 20 might mean very little if we're talking about the number of fruit flies in
an acre of land but it’s fairly unhelpful if we're referring to the number of years before a piece of equipment
fails.

The second statement refers to the fact that each interval crosses zero; this is the statistical inference
component of the problem. If the interval is crossing zero what we're saying is that the estimated effects
aren’t reasonably difference from no effect whatsoever. There’s more concrete methods of quantifying how
significant an estimate is but even after applying those methods there’s a level of critical thinking we have

to apply.
Consider the following;:

You have two boxes of cash in front of you and are asked to choose one. Box A typically has $25
in it, give or take $5 on occasion. Box B typically has $50 in it, give or take $50 on occasion.

If you choose box A you’re guaranteed to walk away with at least $20 but if you choose box B you could
walk away with nothing. When interpreting confidence intervals we apply the same logic.

It’s not the end of the world if an interval crosses zero, usually we can fix the problem by collecting more
data. In practice we rarely gather data on the effects of some process or treatment if we don’t think there’s
any effect at all. The magnitude of that effect is another question— one we can answer with sufficient data.




Intervals on Regression

In chapter 5.1 we fit a regression line to some data from the Hubble space telescope:

Hubble Telescope Data
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I introduced a formula that allows us to use the value of 3; to estimate the age of the universe:

979.708
Distance

A long time ago statisticians did all of these calculations by hand. Fortunately it’s no longer a long time ago
and we can use the 1m() function (or analogous functions in other programs) to calculate (1

# Y~X-1 removes the intercept term in the lm() function
m=1m(hubble$y~hubble$x-1)
summary (m) [4]

## $coefficients
#it Estimate Std. Error t value Pr(>ltl)
## hubble$x 76.58117 3.964794 19.3153 1.031907e-15

The answer we’ll get from this formula will be in billions of years:

979.708

—— =12.7932
76.58 79326

Which is a little off from what the robot that always lies (Google Gemini) tell us, but we should expect some
error given that this is a dataset of size n = 24. What we can do is use the standard error from that same
R output to quantify the uncertainty in 8; and compute a confidence interval for the age of the universe.



We'll use df,, = n — 1 since we only have one parameter, giving us df,, = 23:

af  0.500 0.250 0.200 0.150 0.100 0.050 0.025 0.010 0.001
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 3.527
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 3.505
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 3.485
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 3.467
Cl, = P+t x SE(B)
cp. — J76.58117 —2.069 x 3.964794
AL ) 76.58117 + 2.069 x 3.964794

CI; = (68.39,84.79)

It’s good form (tradition) to show confidence intervals graphically whenever you can. For regression we
display these in the form of confidence bands that wrap around the regression line to show the uncertainty
surrounding the fitted line:

Hubble Telescope Data
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A common misconception with confidence bands is that they should contain a certain percentage of the data
since they’re “95% confident”. This is simply untrue; confidence bands have no expectation or requirement
to cross any of the data whatsoever. There are intervals specifically designed to contain X% of the data,
prediction intervals, but those require a deeper understanding of sampling distributions than this book
will cover for quite a while.



Plugging in the lower and upper bound for Bl will produce an interesting result, in that the lower bound
will be the higher value and the upper bound will be the lower value:

979.708

= 14.331
68.36 3316
979.708

= 11.5531
84.80 59316

But this is a product of two oversights: (1) The equation for the derived quantity (the age of the universe) is
inherently going to produce higher value outputs for lower value denominators (2) this isn’t the best method
for calculating confidence intervals of derived quantities (a discussion for another time).

You might have noticed that the value of ¢* is close to 2, which is the approximation we use for zg.g5/2 = 1.96.
We’ll compute the confidence interval with this value as well and check the differences.

Cl, = Bl + 2% x SE(BI)

o1 — 76.58117 — 2 x 3.964794
] 76.58117 + 2 x 3.964794

ClI; = (68.65,84.51)
979.708
fRgr = 1427106
979.708

= 11.59281
84.51 o8

While this seems like an inconsequential difference we should recall that the units of these estimates is billions
of years. So while the above interval is easy to toss together in a pinch, it’s about 50,000,000 years off on
average from the “more accurate” interval. Does this make the interval invalid? I won’t be the one to say.

The theme of every chapter (and book) about statistical inference should be “use critical thinking skills”.
It’s perfectly rational to use 1.96 or 2.00 to develop your confidence intervals, Fisher did it his entire career
and he’s worshiped by a large proportion of statisticians. It’s equally rational to want a higher degree of
accuracy and instead use a t* value. You could even abandon the 95% interval if the situation calls for it.
The point is that we shouldn’t blindly apply techniques and be surprised when they don’t work 100% of
the time. Use some degree of scientific intuition in all things you do and your analyses will be (shockingly)
sound.
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