
Chapter 6.1 - Uncertainty

Rather than the standard quote to start things off, I think this XKCD comic does a much better
job introducing the theme of this section.

If you wanted to criticize the entire field of statistics you would only have to focus on the complete lack of
unity in our methods. Almost every other science has some degree of unity in their fundamental theorems
and philosophies: physics considers one unified model of relativity, biology embraces the theory of evolution,
chemists generally accept the existence of sub-atomic particles, and engineers overwhelmingly agree that
money is very nice to have.
Statisticians, however, can’t agree on much at all. The worst part is that our philosophical arguments are
so persistent and escalatory that the other sciences can’t keep up with the drama. If you asked any tenured
professor outside of statistics what they believed the hottest debate in statistics was they would likely say:
“Whether Frequentist or Bayesian statistics is better!”. That’d be the correct answer if this textbook was
written in the year 2000.
These days that discussion has fizzled out to a steady statement of: “Both methods are valid and asymptot-
ically equivalent”. The validity of that statement is worth a far greater dialogue— somewhere else besides
here. That said, it’s quite difficult to discuss the subsequent passages of this book without explaining the
theoretical basis of uncertainty quantification.
Since all statistics stems from mathematics and all mathematics begins with philosophy we have to engage
in a philosophical discussion.

In my endless naiveté I believed that the preparation of this chapter would be painless.
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Differing Perspectives

A doctor is stuck in a room with 3 patients who have been exposed to a perfectly lethal
(0% survival) and perfectly transmissible (any exposure leads to inoculation) virus that only
occurs in 0.15% of the population. The doctor tests all 3 patients for the pathogen and finds
that one of them is positive while the other two are negative. If a patient is sick the test will
always be positive but if the patient is healthy the test will be negative 95% of the time. The
doctor has 4 doses of anti-viral available to them that will always cure the illness and prevent
death, given that the pathogen is present. If the pathogen is not present the anti-viral
will always kill the recipient. Who should the doctor administer the anti-viral to?

The methods detailed in this book so far would lead us to a simple solution; we administer the anti-viral to
the positive patient since the probability of it killing them is only 5%. While this assumes that a 5% chance
is an acceptable level of risk— we can confidently make that assumption for most people facing this decision.
In this case the additional information isn’t necessary to solve the problem. The perspective that we don’t
need to consider the additional information to solve the problem can be considered frequentist in nature.

Frequentist: Methods using the perspective that the probability of an event is defined as the relative
frequency of that event’s occurence across infinite trials.

Frequentist methods are so commonly taught that many consider them to be the default state of statistics.
While the methods we’ve covered up until this point haven’t been inherently frequentist, they are the
fundamental building blocks for the frequentist framework. There are two general reasons these methods are
so prevalent:

1. Frequentist methods are (typically) analytically simple.

2. The theories behind frequentist methods are very accessible.

These two reasons result in frequentism being much easier to teach than other statistical methodologies;
if something is easy to teach it tends to be taught a lot. But this idea of accepting only the data we’re
presented and using some defined method of assigning probabilities should make us uncomfortable in this
scenario. If the stakes were lower we might be okay with accepting our known methods but there must be
some way of considering all of this additional information. The perspective that previously or prior known
information can be incorporated into the assignment of probability is the basis for Bayesian methods.

Bayesian: Methods using the perspective that the probability of an event is the result of comparing the
likelihood and prior knowledge of the event with the observed evidence.

Bayesian methods are the product the philosopher (among other professions/titles) Thomas Bayes. Bayes
developed a philosophical and mathematical framework for assigning probabilities using propositional logic
rather than strictly quantitative techniques. We’ve talked about these methods before and the conclusion
of that (brief) discussion was that they were hopelessly complex. We’ll need to accept that this is still true
despite how simple the implementation is about to look.
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Bayes’ Rule

To solve this problem using bayesian techniques we only need Bayes’ rule:

P (A|B) = P (B|A)P (A)
P (B)

Which can be simplified to “plain English” as:

Posterior = Likelihood × Prior
Evidence

The rule feels like an extended definition of conditional probability, which it is, but there’s context we need
to apply to the equation in order to understand how it differs from a basic definition. For instance the
likelihood can be multiple things: the likelihood function of a distribution (the primary case for Bayesian
modeling), the likelihood of event B occurring upon observation of A, the degree with which we believe the
event to be probable. The prior is almost always an assumption we place on the warrant (often the data
generating process) and the evidence is some observation of reality. We sometimes refer to the evidence as
the marginal since the equation uses conditional probability assignments and this is the standard vocabulary
in conditional probability for individual event probabilities. The posterior is the result of interest which
makes this equation implicit.

The marginal is the most problematic component of Bayes’ Rule since it’s often the only one besides the
posterior that’s unknown. While it might seem confusing to refer to observed evidence as unknown but this
is exactly what produces the “magic” of Bayesian methods. We propose assumptions about the process we
seek to understand as a substitute for pure observation of data. In order to proceed with calculating the
equation by using those assumptions we have to solve for the marginal using the law of total probability:

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac)

When we fully expand these formulas we can see the rationale behind the law:

P (B) = P (B ∩ A)
P (A) × P (A) + P (B ∩ Ac)

P (Ac) × P (Ac)

P (B) = P (B ∩ A) + P (B ∩ Ac)

This is true when we consider the definition:

P (A) + P (Ac) = P (S)

Since we’re intersecting A and everything that isn’t A the equation is analogous to:

P (B) = P (B ∩ S)

Which is generally stating “B is equivalent to all of the spaces in the sample space where B is”. As this is
the definition of an event in a sample space we’ve done a lot of back flips and cartwheels to define B without
ever observing B independently.
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Plugging this into Bayes’ rule:

P (A|B) = P (B|A)P (A)
P (B|A)P (A) + P (B|Ac)P (Ac)

With this we can stage our attack on this problem! We’re interesting in discovering the probability that the
patient is sick given that they tested positive.

Let D+ ≡ Disease Positive
D− ≡ Disease Negative
T + ≡ Test Positive
T − ≡ Test Negative

P (D+) = 0.0015
P (D−) = 0.9985
P (T +|D+) = 1.00
P (T −|D−) = 0.95
P (T +|D−) = 0.05

P (D+|T +) = P (T +|D+)P (D+)
P (T +|D+)P (D+) + P (T +|D−)P (D−)

= 1 × 0.0015
1 × 0.0015 + 0.05 × 0.9985

= 0.02917

By this logic there’s a 97.083% chance that if we administer the anti-viral to the positive patient it will
kill them. Why is this? What we’ve done is apply the additional context of the tests probability of false
positives and the rarity of the virus. Even though the chance of a false positive is very low the chance of
being positive to begin with is even lower. Bayes’ rule allows us to apply this prior knowledge to inferential
process and get a wildly different result from frequentist methods.

Errors in Estimation

It’s at this point that many of us might be worried there’s an error in the text, possibly screaming at the
inconsistency or smugly believing they’ve cracked the riddle. The original problem stated two related facts
right away:

1. All of the patients have been exposed to the virus.

2. The virus is perfectly transmissible, any exposure leads to inoculation.
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Our inference from both methods were completely wrong. Everyone is sick so everyone should get the anti-
viral, including the doctor. This is more than a simple check of reading comprehension it’s a chance to look
at the reality of statistics;

“All models are wrong, but some are useful” - George Box

Everything we do in statistics is “wrong” regardless of the method. Thus, statisticians aren’t so much
concerned with the accuracy of an estimate but rather the degree with which it is wrong. Depending on
the statistical methods you’re using you’ll quantify that “wrongness” (which we refer to as uncertainty) in
different ways.

If all 3 patients are sick but only 1 tested positive then the test must be capable of producing false negatives.
The frequentist perspective of uncertainty would have us test the test to see if it’s truly 100% sensitive for
true positives. This is the technique we’ll be covering throughout chapters 6 and 7, we check the uncertainty
associated with the methods we’ve used rather than the estimates they produce.

The reason I’ve introduced Bayesian methods is because the Bayesian perspective of uncertainty is the one
student’s often confuse to be frequentist. Bayesian methods quantify the uncertainty of the proposition
rather than the method. If we were to calculate the uncertainty for each method:

• Frequentist uncertainty would be a “confidence interval”, interpreted as the probability that the method
(the test for the pathogen) is going to produce the correct result.

• Bayesian uncertainty would be a “credible interval”, interpreted as the probability that the estimate
(the proposition that the patient is disease positive) is the truth.

Both of these are scientifically valid and in many advanced statistics courses students go through the exercise
of proving that they converge to the same results as the experiments are repeated ad infinitum. For our
purposes we should recognize that the approach we take when modeling processes defines how our uncertainty
is interpreted. If we produce scientific inference from flawed understanding of statistical inference we’re
destined to create horrendous errors (and thus, bad science).

Making Assumptions

This problem highlights another important feature of all statistical inference, and thus all science. No matter
what approach we take to solving this problem there is no strictly correct answer without accepting some
feature of the problem as truth. In order to proceed with quantifying the uncertainty in the test we need to
operate under the assumption that the virus is perfectly transmissible. If we wish to challenge the statement
that exposure guarantees inoculation then we have to assume that the test is truly 100% sensitive for true
positives and 95% specific for true negatives. Even if we were so allergic to assuming anything about the
virus and the test we would still have to operate under one of the remaining assumptions. Were all 3 patients
actually exposed? Is the anti-viral guaranteed to cure when someone’s sick and kill when they’re healthy?

The debate between statistical methods generally boils down to a bizarre argument between “subjectivity”
and “objectivity”. Yet, in order to perform any worthwhile science we must always accept some degree of
risk. It would be a tragedy for the remainder of scientific progress to consist of repeatedly proving everything
we’ve ever discovered or concluded to be correct. While we should strive to be as correct as possible there
is no science without accepting the chance of being blatantly incorrect.
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“The subjectivist (i.e. Bayesian) states his judgements, whereas the objectivist sweeps them under
the carpet by calling assumptions knowledge, and he basks in the glorious objectivity of science.”
- I.J. Good

Statistics is the result of using logic and mathematics to assist with scientific inference. Logic, mathematics,
and science as a whole are the endeavors of humans. As humans are inherently imperfect, so are these
endeavors.
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