Chapter 5.3 - Simple Linear Models

“Statisticians, like artists, have the bad habit of falling in love with their models.” - George Box

The “perfect” model doesn’t really exist. Models are crude representations of reality, like model airplanes,
they’re never going to achieve true accuracy. But if we wanted to get as close to perfect as possible we would
want a model that’s flexible, easy, intuitive, and works more often than not.

That model is the linear model:
Y=XB+e , e~ N(0,Ic%

This form of the linear model, the general linear model, hits all of those pre-requisites we discussed. Data can
easily be manipulated to work with it, it can handle any number of parameters so long as they’re less than
the total amount of samples (n > p), and it readily produces highly interpretable results. Most graduate
statistics programs will spend at least two semesters covering the theories and applications of the linear
model. For our purposes we’ll be discussing a reduced form, the simple linear model:

yi=Bo+Piwi+e , €~ N(0,07%)

Assumptions

The shift from least squares to the linear model seems minor, but we’ve made a mammoth change; a
distributional assumption on the residuals.

€ ~ N(0,0?)
The same assumptions we had to meet with least squares apply to the linear model:

e The expected value of the residuals is 0
o We assume homoscedasticity (constant variance)
e There exists linearity in the process we're modeling

We’ve now added in the assumption of normality in the residuals. This is an incredibly useful assumption
to work with because we're able to capture (and model) the “random noise” in the data generating process.



It should be noted that the data isn’t what we’re assuming to be normal, but rather the residuals. One does
not inherently beget the other, but sample size increases tend to result in that normal distribution (thanks
to our dear friend the CLT):
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A useful feature of this assumption is that o component. Where we can estimate the variance of the
residuals, we can in-turn estimate the variance of regression parameters.

This concept will become more useful as we dive deeper into Chapter 6, but for now we can see how the
standard 1m() function in R (which stands for linear model, if we hadn’t figured that out) will give us the
“standard errors” (analogous to standard deviation) of regression coefficients.



m=1m(Y~X) # this model uses the 'full' sample size of the heart study
summary (m) [4] # coefficients with standard errors, t-values, and p-values

## $coefficients

## Estimate Std. Error t value Pr(>|tl)
## (Intercept) 179.967471 17.7115839 10.161004 4.771714e-21
## X 1.219441 0.3213438 3.794819 1.786286e-04

The method we use to obtain these values is different from least squares, but in the next section we’ll show
that the coefficient estimates of a linear model will match those of least squares.

Maximum Likelihood Estimation

This portion is fairly advanced relative to the expectation of the textbook. It’s been included to
help students better understand the linear model but you shouldn’t fret if this goes over your
head.

When we discussed the normal distribution we introduced its probability distribution function (PDF) and
threw it aside. We need to revisit this function in order to handle a model that assumes normality. (We'll
be using exp(z) to denote e”)
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If we assume n observations, x1,xa, ..., Z,, are independent and identically distributed (normally) we can
consider them to each have a probability of observation that is modeled with the normal PDF. From there
we can combine their individual PDFs into a joint probability distribution. We can use this joint PDF to
construct a likelihood function, describing the likelihood that these observations occur given the parameters
we’ve have:
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Interestingly, the regression parameters of the linear model are estimating the mean in this likelihood func-
tion. A simple numerical proof can help explain this concept. Imagine an “intercept-only” model:

yi=Bo+e , €~ N(0,07)

When we fit this intercept-only model to the total heart study data, using serum cholesterol as the response,
we’ll find that the mean of y will match the value of 3.



# intercept only models can be fit in R by setting the only predictor as '1'
cat("Intercept =", coef(lm(Y~1)),"\n")

## Intercept 246.264

cat("Mean of Y =", mean(Y))

## Mean of Y = 246.264

This leads us to another method of denoting the simple linear model:
yi ~ N(Bo + Przi , 07)
We can also use a separate statement to define p:

Yi ~ N(Mia02>

i = Bo + Brx;

We're constructing this likelihood function specifically for the response (y;) using the predictors (x;) and
the regression parameters(Sy, 51,02) so we'll need to do some rearranging in addition to substituting the
regression equation for p:

)n exp ( (i — (Bo + 51%))2)
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L(yz‘xm 507513 02) = (\/2:;7

This likelihood function now informs us on the probability of observing y; given (remember your conditional
probabilities) the values we have for x;, By, 31, and 2. So higher values imply a higher likelihood of those
observations of y; matching the values of the data and parameters. Naturally we’d like to maximize this
likelihood, which is a shockingly simple algorithm!

1. Calculate the first partial derivative of the likelihood function (w.r.t. the parameter of interest)

2. Set the equation equal to 0 and solve for the parameter of interest

We'll find that the likelihood function is a hassle to work with during this process, but we can take the
natural logarithm (we’ll denote this as log) of the likelihood function and work with it the same way (this is
referred to as the “log-likelihood”):

n

2 n L 2
(yilis Bo, Br,0%) = =5 log 27 —nlogo — 5—5 3 (i — (B + H12:))

i—1



Solving the following operations:

ag(yz|xm 607517 02)

=0

9Bo
8€(yz|33z, ﬁ07 617 02) -0
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Ol(yi|x;, Bo, B1,0°) -0
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Will produce the following results:
Bo=9— Bz

S (@i — @) (yi — §)

= -

n

== (i — (Bo+ Brmi))”

i=1

BO and Bl match the least squares estimators because of the assumption of independence in the residuals.
This means that whatever solution we find for least squares estimators will also maximize the likelihood
function for the analogous linear model. This is why the 1m() function can be considered a least squares
regression model if we only consider the coefficients.

The defining difference, and reason we use the linear model, is that we can quantify the variance in our
estimates from a linear model. Without a distributional assumption on the residuals we can’t do this.

As a final note, the distribution of the residuals doesn’t need to be normal. If we change the
distributional assumption from normal to some other named (or non-named) distribution then
we've constructed a generalized linear model (GLM). GLMs are an extremely useful tool for
applied sciences but are fairly complex and not worth discussion in this chapter.




The Coefficient of Determination: R?

When we fit a least squares regression line to our trivial data set in chapter 5.2, it was pretty obvious that
it wasn’t passing through any of the points:
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This implies (as we should be aware) that the model is inaccurate. Quantifying the level a model is accurate
is an obsession of many scientists and statisticians alike. The linear model (and least squares) provide a
simple measurement of this “accuracy” or “goodness of fit”, R?.

If we were to take the differences between the observed and predicted values of the response, we would have
calculated the residuals. If we square these values we’re given the squared difference between the observations
and predictions:

y | 9 Jy—9]Wy—9)7?
0.16 | 0.7 | —0.54 | 0.2916
282 [1.74 | 1.08 | 1.1664
224 | 2.78 | —0.54 | 0.2916

W8

Just like with variance, this squaring step gives us a magnitude without having to worry about sign. If
we sum up these squared differences we have the total magnitude of the squared difference between our
observations and our predictions:

0.2916 + 1.1664 4 0.2916 = 1.7496

This is a pretty useful measurement since we can consider it to be a quantification of how éncorrect our
model is from reality. But we're left with two problems.

e Whatever unit this magnitude is in holds a lot of the context as to what we’ve actually measured.

e We don’t know how “significant” the magnitude is even with the context of units.



Think back to concept behind z-scores: A difference in weight of 2 Ibs. may be significant when we’re talking
about one group of people while it could be completely irrelevant for another.

We need to develop some way of contextualizing this squared difference within the data. We may have
already come up with a good candidate for achieving this— the difference between the observations and
their average. We’ll want to square these values to ensure everythings in the same dimensions:

y | 9 Jy—9lw=—9’Ty—-u[Ww-9?
0.16 | 0.7 | —0.54 | 0.2916 | —1.58 | 2.4964
982 [1.74 | 1.08 | 1.1664 | 1.08 | 1.1664
224 [ 2.78 | —0.54 | 0.2916 | 0.50 | 0.2500

[SUIR NI

2.4964 + 1.1664 + 0.2500 = 3.9128

What should we do with it now? Well, it’d be disappointing if our instinct at this point wasn’t to take a
ratio between these two sums:

1.7496

= 0.4471
3.9128 0447

What this ratio represents is how incorrect the model is. Since it’s a ratio it’s bounded between 0 and 1;
if we take the complement of this ratio we should have a measurement of how correct the model is:

L7496
3.9128

= 0.5529

This value, 0.5529, is the R? (“R squared”) of the model, also known as the “coefficient of determination”.
It represents the proportion of the variance that’s explained by the independent variable relative to the total
variance in the data. Another way of thinking of it is as a measurement of the “goodness of fit” of the
regression line. The general formula for R? is:

Where RSS is the “residual sum of squares”:
RSS =3 (u: — 9)°
i=1

And TSS is the “total sum of squares”:

n

TSS = (i —9)°

i=1
But there’s an alternate formula for R? (several if we really dive into it):

R*=rxr



Where r is the correlation coefficient. It’s another showcase of the general laziness of statisticians that we
would call the squaring of r “R squared”.
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While R? is a good metric to use when checking the “quality” of a simple linear regression model it quickly
falls apart when we introduce more than one parameter. We should also be weary of using R? as a substitute
for scientific inference. Just because the value of R? is high doesn’t mean the model is inherently representing
the process correctly. Likewise, a low value of R? is not a black-and-white indicator of a “bad” model.

We have to use our scientific expertise in tandem with statistical models to make them worthwhile. Otherwise
we may as well throw up our hands and say that scientific inquiry is completely meaningless.
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