Chapter 5.1 - Mathematical Models

“You know, for a mathematician, he did not have enough imagination. But he has become a
poet and now he is fine.” - D. Hilbert, talking about an ex-student.

It’s an injustice to students that they rarely learn about the applications of math until they're already
prepared for a quantitative career. Models are perhaps the most fascinating tool in mathematics, yet we
avoid teaching about them until we absolutely have to. This chapter will attempt to fix that.

There is a problem with doing this, however. Mathematical models are far from a simple concept to grasp.
When we're observing a real process, (i.e., the flow of warm air around a room as it transitions to cold air),
and attempting to convert this into pure mathematics we can’t escape the complexities of math. So while
we’ll attempt to keep things simple enough to digest— this will still feel like a slightly out-of-reach concept.
And that’s OK.

Phenomenological vs. Mechanistic

When discussing mathematical modeling we need to first establish a key difference between major “types” of
models. If we were to build a model that simple described a relationship between variables by fitting them
into the model, we refer to that model as phenomenological. Consider the example below where we take
data from outbreaks of Norovirus on passenger cruise ships and place it into the model:

Infected = Intercept + Total Passengers + Total Passengers>

This will show the trend of infected passengers relative to total passengers as a smoothed polynomial curve.

Cruise Ship Norovirus Outbreaks
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The model can be considered phenomenological because it’s not developed from knowledge of the process
but rather used to try and better understand the process. While many statistcians will consider any model
that is complex enough to be uninterpretable to be phenomenological— this is not the truth. Consider the
case of fitting a straight line through the heart survey data using the model:

Cholesterol = Intercept + Age
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This is phenomenological if we're uncertain whether the relationship between age and cholesterol is strictly
linear. We don’t need to know whether the relationship between variables can be captured fully using just
those variables, but we do need to be fairly certain of their isolated relationship.

If we were to develop a model from knowledge of a process or relationship and use that model to better
understand our data then we would refer to it as mechanistic. A classic example of mechanistic modeling
is fitting population data to the formula for exponential growth.

)\(t) — )\Oe"/(t*to)

Where A(t) is the population size at time ¢, to is the initial time point, Ag is the initial population, and ~ is
the rate of population growth. This is actually a solution to an ordinary differential equation (ODE) and is
well studied because of how clear the effect of population growth is over time.
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Mechanistic models such as this one have the benefit of being highly interpretable; most biological scientists
can comprehend a growth rate. We aren’t gaining some new knowledge about the process— we’re learning
about the rate of population growth for this specific data.

Linear vs. Nonlinear

All models can be classified as linear or non-linear. For statisticians linearity is defined by the parameters;
the following would be considered linear:

Y=aX+5b
w= By + 1z + oz’
P =p+ alog(r x t)

A = Bcos(X)+10

Nonlinear models are anything else where the parameters have some nonlinear component:
Y =a’X+b
w = fBo + log(B1)x

A(t) = Age?(t710)




Deterministic vs. Probabilistic

The models we’ve covered so far perform the exact same way everytime we fit them to data, in that there’s no
“randomness” to them. Since these models operate under the assumption that the outcomes and relationships
have been determined already, we refer to them as deterministic.

Showing randomness can be helpful in some scenarios since real life is seemingly filled with random outcomes.
If we were modeling something like the movement of cattle in a pen we should expect a certain degree of
chaotic movement since the decision making of cattle can sometimes be enigmatic. Statisticians refer to this
chaos as stochasticity. Since we consider stochasticity to be dictated by probabilities when we develop a
model that accounts for it we refer to that model as probabilistic.

We can take a deterministic model and place it inside of a probabilistic one; this is actually the core
methodology that statistical models are developed through. Later on in this chapter we’ll show how we can
take the model for the effect of age on serum cholesterol levels, (a purely deterministic model as we’ve shown
it), and transform it into a probabilistic model through the addition of one parameter:

Cholesterol = Intercept + Age + Random Error

Model Outputs

In many physics textbooks there’s discussion about the difference between explicit and implicit models.
Statisticians don’t concern themselves with this distinction as much because we almost always use implicit
models.

Explicit models are meant to calculate some finite value from the input of variable conditions. This would
be something like the model for compound interest:

P(t) = Poert

We generally use this formula by inputting the principal Py, the rate r, and the time elapsed ¢, then
calculating the final amount. Since we know all of the parameter values we’re only interested in estimating
P(t).

Statistics aims to estimate parameters so our primary technique is implicit modeling. We don’t know the
effect of Age or Intercept in our cholesterol model so we're seeking to estimate them with the data:

Cholesterol = Intercept + Age

Cholesterol = 162.127 + 1.452 x Age

Once we calculate the value of these parameters we treat the model as if it’s explicit, but our modeling
technique was still implicit.

Sometimes the goal of a model isn’t the parameters but rather a result of using the parameter values in an
external formula. As an example: We can use data from the hubble telescope to estimate the parameters of
the formula:

Velocity = Distance



Hubble Telescope Data
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Then plug the value of the Distance parameter into the equation:

979.708
Distance

To estimate the age of the universe. We refer to any such output as a derived quantity since it was derived
from the parameters of the model.

As a final note, there are two more distinctions that statisticians make between models: Frequentist versus
Bayesian. These are rarely discussed in introductory courses because of a major gap in scientific communi-
cation for bayesian methods. The result is that students have little or no knowledge of bayesian models and
walk away from their education believing frequentist techniques to be the only valid ones.

The basic premise behind these differing modeling techniques is that they have competing philosophies on
how inference should be informed. Frequentism dictates that inference should be purely the result of data
with minimal assumptions. Bayesianism argues that inference can be supported with prior knowledge about
the possible distributions of parameters.

In keeping with traditions I'll throw my hands up, cry out that the details are outside of the scope of the
book, and leave you with a quote to either provide context or stretch the page count.

“Bayesian theory requires a great deal of thought about the given situation to apply sensibly,
and recommending that scientists use Bayes’ theorem is like giving the neighborhood kids the
key to your F-16.” - Andrew Geldman
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