Chapter 4.1 - The Normal Distribution

“Everybody believes in the exponential law of errors [i.e., the Normal distribution]: the experi-
menters, because they think it can be proved by mathematics; and the mathematicians, because
they believe it has been established by observation.” - Whittaker, E. T. and Robinson, G.

When statisticians discuss models and distributions we always talk about the “data generating process”. The
idea we're referring to is that all of the data we observe and record arises from a real world system that can
be represented by a mathematical function.

It may seem like we’re grasping at straws to make math have real life applications or maybe we lack all
respect for nature and want to pretend we understand it. The truth is that math has this bizarre habit of
making sense when applied to things that aren’t math. Mathematicians never intend to interact with reality
but reality keeps knocking on their office door asking for more.

Capturing the data generating process involves two steps:

e Understanding the constant or deterministic features of the process.

e Assuming the nature of the chaotic or probabilistic features of the process.

In this chapter we discuss the probabilistic components— and hopefully find some order among complete
chaos.

Consider a simple experiment of rolling 3 fair, six-sided dice, then adding up the numbers they land on.

set.seed(73) # reproducibility seed
dice=sample(1:6,3,T) # sample from 6 fair, siz-sided dice
cat("Dice rolls:", dice, "\n", "Sum of the rolls:", sum(dice), "\n")

## Dice rolls: 51 1
## Sum of the rolls: 7

We're going to repeat this action 1000 times and take a look at the results for first 10, 100, and 500 iterations,
as well as the total iterations.

set.seed(73)
results=replicate (1000, sum(sample(1:6,3,T))) # 1000 iterations
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The pattern is clear; as we increase the number of iterations the results become a symmetric histogram with
a central peak. We saw this shape before when we discussed the Empirical Rule but never addressed why
it’s so special that a rule was developed to describe it. As it turns out this shape is just special enough to
have it’s own name. We call this the Gaussian or Normal distribution and it’s the most important
function to statistics (and perhaps all of science).

This shape doesn’t just pop up when adding up the total of dice rolls, we can find it everywhere.
Our cholesterol example comes from a much larger data set with a variety of biometrics on the subjects.

If we look at the maximum heart rates the subjects achieved during a cardiovascular test we’ll see it looks
vaguely normal:
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But why isn’t it truly following a normal distribution? Well that’s because real life processes don’t match
well with the normal distribution. The normal distribution is unique in that it models the summations and
averages of data over the long run. For instance, if we look at the data for male and deer body mass it
should look non-normal.
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But we can use this data for an interesting exercise. Let’s treat the weight of males and females as if they’re
two separate populations that we can pull samples from. We’ll take a random sample of 30 deer from each
group and then calculate the average of their body weights. We can then replicate this experiment the same
way we did with the dice example, 10, 100, 500, and 1000 times.

set.seed(73)
males=replicate(1000,mean(sample (subset(deer$Body.mass.in.kg,deer$Sex=="Male"),
30,replace=T)))
females=replicate(1000,mean(sample(subset(deer$Body.mass.in.kg,deer$Sex=="Female"),
30,replace=T)))
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Female Deer
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Again, this might seem like a cheeky attempt at making statistics work with the real world. But as we
progress we’ll see that the nature of the normal distribution makes it the ultimate model for population level
dynamics. Since statistics is a field built around describing populations, this is a very attractive feature.

Probability Density Function

The Normal Distribution is characterized by its iconic symmetric, bell shape curve centered around its
peak. When describing distributions we discuss the parameters of their distribution function. The parameters
of the normal distribution are its mean (x) and standard deviation (o).




The probability density function for the normal distribution may seem a little clunky and unintuitive, but
it has a lot of beautiful properties that explain its structure.
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The use of an exponential in the kezrnel is what gives the normal distribution its “curves”, which is made
clear when we plot the function e :
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The standard deviation of a normal distribution controls how spread the curve is. When we add that piece
of the kernel in we’ll see that it’s tails push outwards. Let’s say that we’re adding in a standard deviation
of 3:
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The mean controls the center of the distribution. If we include that component and set the mean equal to
2 we’ll see the return of that “dip” in the tails as well as a shift in the center towards 2:
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Right now our curve has a far greater area underneath it than 1.00. This is where the normalizing constant
comes into play:

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

While it’s not necessary to study the PDF in-depth we should always take the time to understand why the
PDF is constructed the way it is. It’s hard to make use of a tool when you don’t even know what it looks
like— it’s easier to use a tool if you know roughly how it works.

The Standard Normal Distribution

The parameters of the normal distribution are incredibly helpful since they allow us to shift and squish the
curve itself:




But they create some problems when it comes time to work with the PDF itself. The normal PDF is one
of those impossible functions to integrate for reasons that are happily left as an exercise for the reader.
Our main focus now is figuring out how to compute probabilities from the normal distribution despite this
challenge.

The reality is that since the integral isn’t analytically tractable we have to use somewhat exotic methods
to approximate the probability associated with any given interval beneath the normal curve. Since there
are legitimately infinite possible combinations of means and standard deviations that we can plug into the
normal PDF this is a very inconvenient thing to have to do. But what if we could somehow calculate all of
the possible combinations and place them into a massive reference book?

Statisticians did that in the 1800s, kind of.

Let’s look at the data from our dice experiment again. The histogram from 1000 iterations had that bell
shape we’re looking for the classify something as normal so we’ll just focus on that:
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We know from chapter 1.5 that we can standardize data by subtracting it from the mean and dividing by

the standard deviation. This converts everything to z-scores that measure every data points distance from
the mean in standard deviations.
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While the histogram looks a little different due to some issues with the plotting software, nothing else has
changed besides this standardization.

The data is now normally distributed with ¢ = 0 and ¢ = 1. What this means is that any calculations made
for probabilities from this data are equivalent to the original data. So the probability of the 3 dice adding up
to a value between 7 and 13 is the exact same as the probability that the standardized values are between
—1 and 1 standard deviations of the mean.

We already know what that probability is thanks to the Empirical rule!

Empirical Rule

68% of the data

95% of the data

99.7%-100% of the data

The beauty of this is that instead of making a reference book for every interval on every possible combination
of means and standard deviations we can make a single table for this version of the normal distribution and
standardize every time we want to make a probability calculation.

This special case of the normal distribution is called the standard normal distribution and it’s purpose is
exactly as we’ve described: create one unified table for calculating the probability density of normal random
variables.

Standard Normal Distribution: A special case of the normal distribution with mean y = 0 and standard
deviation o = 1.

We use the letter Z to represent a standard normal random variable (referring to z-scores). The probability
that a standard normal random variable Z is between a and b (P(a < Z < b)) is equal to the area
under the standard normal curve over the interval [a, b].

We calculate these probabilities using the z-table, a reference table with approximated values for the area
under the curve to the left of each value between —4 and 4 indexed by 0.01.



Z-Table from -0.5 to 0.5

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-0.5 0.3085  0.3050  0.3015  0.2981  0.2946  0.2912  0.2877  0.2843  0.2810  0.2776
-0.4 0.3446  0.3409  0.3372  0.3336  0.3300  0.3264 0.3228  0.3192 0.3156  0.3121
-0.3 0.3821  0.3783  0.3745  0.3707  0.3669  0.3632  0.3594  0.3557  0.3520  0.3483
-0.2 0.4207  0.4168  0.4129  0.4090 0.4052  0.4013 0.3974  0.3936  0.3897  0.3859
-0.1 0.4602  0.4562  0.4522  0.4483  0.4443  0.4404 04364 0.4325 0.4286  0.4247
0.0 0.5000  0.5040  0.5080  0.5120  0.5160  0.5199  0.5239  0.5279  0.5319  0.5359
0.1 0.5398  0.5438  0.5478  0.5517  0.5557  0.5596  0.5636  0.5675  0.5714  0.5753
0.2 0.5793  0.5832  0.5871  0.5910  0.5948  0.5987  0.6026  0.6064  0.6103  0.6141
0.3 0.6179  0.6217  0.6255  0.6293  0.6331  0.6368 0.6406  0.6443  0.6480  0.6517
0.4 0.6554  0.6591  0.6628  0.6664 0.6700  0.6736  0.6772  0.6808  0.6844  0.6879
0.5 0.6915  0.6950  0.6985  0.7019  0.7054  0.7088  0.7123  0.7157  0.7190  0.7224

We can use this table to solve any standard normal problem we might encounter. For instance, if we wanted
to find the probability that a standard normal random variable is less than 1.26:

1.26

We would look into our z-table, go down to “1.2” on the left, look over to “0.06” on the top, and find their
intersection.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.0  0.8413 0.8438 0.8461 0.8485 0.8508  0.8531 0.8554 0.8577  0.8599  0.8621
1.1 0.8643 0.8665 0.8686 0.8708  0.8729  0.8749 0.8770 0.8790  0.8810  0.8830
1.2 0.8849 0.8869 0.8888  0.8907 0.8925  0.8944 0.8962 0.8980  0.8997  0.9015
1.3 0.9032 09049 0.9066 0.9082 0.9099  0.9115 0.9131 0.9147 09162  0.9177
1.4 09192 09207 0.9222 0.9236  0.9251  0.9265 0.9279 0.9292  0.9306 0.9319

Since the z-table reads to the left that means that all the values listed represent the probability that a
standard normal random variable, Z, is less than the given value. So the answer is fairly direct:

P(Z < 1.26) = 0.8962
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What about the probability that Z is greater than a specific value?

—-0.58

Even though the z-table only reads to the left we can easily solve this problem by turning to our dear friend
set theory!

For a probability distribution to be considered legitimate is has to have a total probability equal to 1.00
which means that the area underneath the curve is also 1.00 ... this should feel familiar.

AC

All we have to do is calculate the probability that Z is less than —0.58 and then subtract that probability
from 1.00 to find the complement. This complement is the probability that Z isn’t less than —0.58, which
is the definition of being greater than —0.58.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-0.7  0.2420  0.2389  0.2358  0.2327  0.2296 0.2266 0.2236  0.2206 0.2177 0.2148
-0.6  0.2743  0.2709  0.2676  0.2643  0.2611 0.2578 0.2546  0.2514 0.2483 0.2451
-0.5  0.3085 0.3050 0.3015 0.2981  0.2946  0.2912  0.2877  0.2843 0.2810 0.2776
-0.4  0.3446  0.3409 0.3372  0.3336  0.3300 0.3264  0.3228  0.3192 0.3156 0.3121
-0.3  0.3821 0.3783 0.3745  0.3707  0.3669  0.3632  0.3594  0.3557 0.3520 0.3483

P(Z > —0.58) =1 —0.2810 = 0.7190
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What about the area between these two values? When it comes to calculating intervals there’s a few different
tricks we can use.

Since we’ve already calculated the area to the left of each value in this interval we can subtract them from
one another. This is better explained visually. We can start with the area to the left of 1.26:

And then remove the area to the left of —0.58:

-0.58 1.26

This leaves us with only the interval between the two.



-0.58 1.26

P(—0.58 < Z < 1.26) = 0.8962 — 0.2810 = 0.6152

We can also apply the complement trick here by calculating just the area of the tails, so the area to the left
of —0.58 and the right of 1.26:

-0.58 1.26

The complement of this is that interval between them:

P(—0.58 < Z < 1.26) =1 — (0.2810 + 0.1038) = 0.6152

Any time we’re dealing with a symmetric interval we can get away with calculating the area the the left of
the lower value or the area to the right of the upper value, doubling it, and finding the complement. This
is a nice by-product of the normal distribution being symmetric.



-1.00 1.00

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.9 0.8159 0.8186  0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365  0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554  0.8577 0.8599  0.8621
11 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749  0.8770 0.8790  0.8810  0.8830

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
-1.1 0.1357 0.1335 0.1314 0.1292  0.1271  0.1251  0.1230  0.1210  0.1190  0.1170
-1.0 0.1587 0.1562  0.1539  0.1515  0.1492  0.1469 0.1446  0.1423  0.1401  0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736  0.1711  0.1685 0.1660 0.1635  0.1611

P(Z>1.00)=1- P(Z < 1.00) =1 —0.8413 = 0.1587 = P(Z < —1.00)

P(—1.00 < Z < 1.00) = 0.8413 — 0.1587 = 0.6826

P(—1.00 < Z < 1.00) = 1 — (2 x 0.1587) = 1 — 0.3174 = 0.6826

The only other common standard normal problem we’ll encounter is calculating the bounds of an interval
when all we have is the probability.

P(—2 < 0.95 < z) = ?

This is an instance where we can leverage the symmetric property of the normal distribution. We know that
the distribution has a total probability of 1.00 and the area to the left of one number should be equal to the
area to the right of the opposite signed number.
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If we find the complement of the desired interval, divide it in half, and locate the number with that probability
then the area between it and it’s mirror should be equal to the interval’s probability.

1-0.95 0025

This involves searching the table for a specific probability, but this isn’t a particularly challenging task (albeit
slightly inconvenient):

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-2.0 0.0228 0.0222  0.0217  0.0212  0.0207  0.0202 0.0197 0.0192  0.0188  0.0183
-1.9  0.0287  0.0281  0.0274  0.0268  0.0262  0.0256 0.0250 0.0244  0.0239  0.0233
-1.8  0.0359 0.0351 0.0344 0.0336  0.0329  0.0322 0.0314 0.0307  0.0301  0.0294

Now if we look to the opposite end of the table and find the area to the left of 1.96 we can subtract these
areas from one another to check if they match the interval probability:

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.8 0.9641 09649 0.9656 0.9664 0.9671  0.9678 0.9686 0.9693  0.9699  0.9706
1.9 09713 09719 09726 09732 0.9738  0.9744 0.9750 0.9756  0.9761  0.9767
20 09772 09778 09783 0.9788  0.9793  0.9798 0.9803 0.9808  0.9812  0.9817

0.975 — 0.250 = 0.95 zp = 1.96

The General Normal Distribution

The whole point of developing the standard normal distribution and going through all of that z-table nonsense
was so that we could work with real data; how do we do that?
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The trick we used to introduce the standard normal distribution is the answer to that question. When we
have non-standard normal data we standardize it by coverting the data into z-scores, use the z-table to
answer any questions we have, and then wun-standardize that information to make it relevant to the data
again.
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It’s un-reasonable to assume anyone is going to calculate 1000 z-scores by hand. Remember: we need this to
be useful with and without a computer. This is where we have to make assumptions to simplify the process.

Let’s start with the assumption that the dice data is actually normally distributed. If this is true then we
can fully describe it with just mean and variance.

# dice experiment

mean(results) # mean

var(results) # wvariance
sqrt(var(results)) # standard deviation

##

## Mean: 10.491

## Variance: 8.84076

## Standard Deviation 2.973342

When representing the distribution of a random variable we use the notation:

X~ f()

Where X is the random variable, ~ means “is distributed”, and f(-) is the distribution with its parameters
included. In the case of Z, the standard normal random variable, we can write it out as such:

Z ~ N(0,1)

This is saying “Z is distributed normal, mean 0, variance 1”. It should be noted that we use variance for
the normal distribution when describing it with this notation, but since 12 = 1 the variance and standard
deviation are the same value.
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When the mean and variance of a normal random variable are not 0 and 1 respectively we refer to its
distribution as the General Normal Distribution (generally just called the normal distribution). To
describe the general normal random variable, X, we write:

X ~ N(/J'702)

)

“X is distributed normal, mean u, variance o2”.
random variable, Y.

Now let’s consider the dice data to arise from a normal

Y ~ N(10.5,8.7)

If we were to standardize Y such that it becomes Z we just need to apply the z-score formula:
Y —10.5
P(Y<6):P<Z<)

V8.7

We can now use the z-table to calculate the probability of Y realizing to any interval within +4 standard
deviations from it’s mean. So let’s do that, what would the probability be that we roll our 3 dice and their
sum is less than 67
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6 —10.5
P(Z<—— | =-1516~——-1.52
( V8.7 )

We’re rounding here so that we can actually use the z-table.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-1.6  0.0548  0.0537 0.0526 0.0516  0.0505  0.0495  0.0485 0.0475 0.0465  0.0455
-1.5  0.0668  0.0655 0.0643 0.0630  0.0618  0.0606  0.0594 0.0582  0.0571  0.0559
-1.4  0.0808  0.0793 0.0778 0.0764  0.0749  0.0735 0.0721  0.0708  0.0694  0.0681
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Since this is an experiment we can check our work against the true results:

# proportion of values less than or equal to 6
sum(results <= 6)/1000

## [1] 0.099

These two values are close, but not exact, which is fine because we never expect exact in statistics. In this case
there’s an element of randomness to the program we’re using to create the data and some estimation error
due to attempting to use continuous methods on discrete values. Still, we can see that our z approximation
gave enough information about the dice rolls that we could make realistic decisions without ever performing
the experiment.

There is the problem of reversing our steps. We could ask how high of a roll we need to land on to be
considered 90" percentile, which has a simple enough solution for standard normal:

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.1 0.8643 0.8665 0.8686 0.8708 0.8729  0.8749 0.8770  0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888  0.8907 0.8925 0.8944 0.8962  0.8980 0.8997 0.9015
1.3 09032 09049 0.9066 0.9082 0.9099 0.9115 09131 0.9147 0.9162 0.9177

But 1.28 doesn’t answer our question. However since a z-score is just the number of standard deviations away
from the mean our particular value is we should be able to multiple the z-score by the standard deviation
and add it to the mean to answer the question:

10.5 + (1.28)/8.7 = 14.275

Considering we’re dealing with a discrete question we can answer the problem fully by rounding. It’s
typically better to over-estimate values when dealing with probabilities and proportions but this is also very
case-by-case. In this case we can safely assume 15 is within the 90th percentile.

Non-standard normal problems are fairly simple so long as we have a firm grasp on standard normal concepts.
The two formulas we’ve seen here cover the full extent of introductory questions surrounding general normal
distribution probabilities:

g

P(X<x):P<Z<x_M>

X=pu+zxo

The normal distribution is an incredible useful and prevalent concept throughout statistics, but it’s not the
full extent of distribution theory. To consider ourselves “familiar” with distribution theory we still have to
address two problems:

1. We currently have no clear way to deal with data that’s not normally distributed or even discrete.

2. Our methods so far have used very large sample sizes. We have no methods to handle realistic sample
sizes.
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