Chapter 3.2 - Probability Set Theory

“Later mathematicians will regard set theory as a disease from which one has recovered.” - Henri
Poincaré

We don’t really discuss set theory properly in statistics. The majority of the science doesn’t rely on it for
more than a few concepts. That said those concepts are difficult to introduce without discussing sets, and if
we can’t make sense of them we’re doomed to struggle with every other concept in this book.

Imagine you're a quantitative researcher working for a national park. An outbreak of Chronic
Wasting Disease (CWD), a prion disease that typically affects deer, has been identified on the
park and you’ve been asked to help the park identify possible causes. The data you're given is
small but very comprehensive, but you’ve decided to focus on the possibility that the disease is
being spread by ticks. You've constructed a list of deer harvested from the same general location
in the park and whether or not ticks were found on their body post-mortem.

Ticks | No Ticks
CWD + 42 18
CWD - 78 62

One of the goals of statistics is to take small samples like this one and extrapolate them to a larger population.
In this case we can think of the sample as a representation of chance outcomes, like a set of complex coin
flips. Given this we should be able to ask questions such as: What is the probability that any given deer is
going to end up CWD positive?

As with most of statistics, the answer to this question is found in a model.

Probability model: A mathematical function that assigns a probability to each possible event constructed
from the simple events in a particular sample space describing a particular experiment.

For a finite sample space with n simple events (denoted E), i.e. S = {Fj, Es,...,E,}, the probability
model assigns a number p; to event E; where P(E;) = p; so that:

0<p;<1 and p;+pr+---+p,=1

For an equally-likely probability model, the probability of observing FE; is:

1
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If A is an event in an equally-likely sample space S and contains k£ outcomes, then:

No. of outcomes in Ak
P(A) = = —
(4) No. of outcomes in S n

With the CWD data, you run an experiment where you select 1 deer from the group and check if they’re
disease positive.

Ticks | No Ticks
CWD + 42 18
CWD - 78 62

We can refer to the outcome where a deer is positive for CWD as an event, A, and calculate it’s probability:

60

But what about the probability that a deer is negative for CWD? If A is an event in S, then the event
where A does not occur is called the complement of A. We denote the complement of A by A¢ — read as
“A-complement”.

Complements

Consider the sample space, S, to be a square. The event, A, is shown as a circle inside of that square. The
complement of A would be everything else in the sample space that is not in A.

AC

Since we’re discussing probability here, the chance of anything occurring in our sample space is 1.00 (or
100%). This is a rule that holds up moving forward: any sample space has a total probability of 1.00.

If the goal is to look at everything in the sample space that isn’t A, and the sample space has a probability
of 1.00, we can define P(A°) as P(A°) =1— P(A).

This can be flipped around to give a definition for P(A), P(A) =1 — P(A°).



Suppose we roll a fair 6-sided die twice, then S contains 36 equally-likely outcomes in the form of 36 ordered
pairs, i.e. (1,1),(1,2),...,(6,5),(6,6). Let A be “roll doubles”.

A€ is the event we “do not roll doubles”, and:

P(AC):lfP(A):lfé:%

We could have counted the number of non-doubles in S, but this requires more effort. We're always searching
for better ways to be lazy in statistics.

At face value, this rule is useful when P(A) is difficult to calculate but P(A°) is easy (or vice versa). In
later chapters this rule is the foundation for working with several key methods in statistical inference; take
the time to understand it.

We'll swap between the dice example and the CWD example to get a good view of how these concepts
translate from simple experiments to “real life” scenarios. Returning to the CWD data, what’s the probability
that a deer will be negative for CWD?

Ticks | No Ticks
CWD + 42 18
CWD - 78 62

While we could consider a negative status to be it’s own event, B, we’ll find that B = A°

140

60
P(A)=—=03
(4) 200

P(A°) =1-0.3=0.7=P(B)

Again, you'll see early on that this method is primarily a convenience but it will become vital.

Unions and Intersections

In trying to determine whether or not ticks could be the cause of this outbreak, it might be helpful to look
at the deer that had a positive CWD status or had ticks. We should be able to recognize at this point that
these are two separate events and what we’re trying to do is join them together. This is referred to as a
union.

The union of two events A and B, denoted AU B, are all outcomes that belong to A, B, or both. Saying
AU B is equivalent to saying “A or B”.



Continuing with our circles example, the events A and B exist as separate event spaces in the total sample
space (the box) with a slight overlap. The union of the events is all of the space that each “event circle” (as
we'll refer to them now) takes up including their overlap.

When we think about calculating the union of two events we should think about describing the space in the
image above. If we take all of the space in A and add it to the space in B we have an inherent problem of
double counting the overlap between A and B since they both include that little sliver in their individual
areas.

Let A = the deer is CWD + and B = the deer has ticks.

60
A)=—=03
(4) 200

120

P(A)+ P(B)=0.3+0.6=0.9

To say that 90% of the deer were either CWD positive or had ticks is ridiculous, and we can prove it with
a complement. Let’s focus on just the CWD negative deer that didn’t have ticks and call that event C:

2

The complement of this event should be the union of A and B, since it’s the only event that’s excluded by
the union.

P(C®) =1-0.31 = 0.69 # P(A) + P(B)

When we look at the difference between this complement and our original calculation and multiply it by the
sample size to recover the original event from it’s probability, we’ll find something familiar:

0.9 —0.69 = 0.21 x 200 = 42

C*€ just so happens to be the deer that were CWD positive and had ticks. This complement is actually
referred to as an intersection.



The intersection of two events A and B, denoted A N B, are all outcomes that belong to both A and B.
Saying AN B is equivalent to saying “A and B”.

In rolling a 6 sided dice one time, consider events A and B:

o A: Roll an even number: {2,4,6}

o B: Roll a number greater than 4: {5,6}

AUB=Aor B=1{24,5,6}

ANB=Aand B = {6}

So to solve the problem of double counting when calculating a union we can simply subtract the intersection
between A and B:

P(AUB) = P(A) + P(B) — P(AN B)

P(AUB)=0.340.6-0.21 =0.69

Mutual Exclusivity

We can still describe the union of two events even if they lack any overlap. It should be clear though that
we can’t describe the intersection of two events that lack an overlap. We refer to this idea as mutual
exclusivity.



Two events A and B are mutually exclusive if they do not share any common outcomes.

Roll a die:

o A:Rollalora?2: {1,2}
o B: Roll an even number: {2,4,6}
e« C: Rolla 3, 4, or5: {3,4,5}
Events A and C' are mutually exclusive. If a 1 was rolled then none of the events in C' could have occurred.

Vice versa, if any events in C' occur we can confidently say that A did not occur. Conversely, events A and
B are not mutually exclusive. They share the common outcome 2 as a possibility.

When we originally calculated the union of two events we had to adjust for double counting of their overlap
in probability. A nice property of mutual exclusivity is that we don’t have that overlap, so we can skip this
step entirely. When we account for two mutually exclusive events, A and B, having an intersection with
probability 0 we end up at the addition rule for mutually exclusive events:

P(AUB) = P(A or B) = P(A) + P(B)

While it may seem ridiculous the example in this case would be calculating the union between CWD positive
status and CWD negative status. A deer cannot be both, this is a biologic impossibility. We can denote the
event for CWD positive as P and negative as N.

P(PUN) = P(P)+ P(N)+ P(PNN)

P(PAN)=0

60 140 200
P(PUN)= — +-— 4+0=>— =100
( )= 300 " 200 T° = 200

Despite this being an over-engineered calculation of sample size, we can use this along with our previous
calculations to make our table of data much more convenient.



Ticks | No Ticks | Total
CWD + 42 18 60
CWD — 78 62 140
Total 120 80 200

This table is now something referred to as a contingency table and it allows us to circumvent a lot of the

math we’ve been previously working through:

Event B B¢ Total
A ANB | An B¢ A
A€ A°NB | A°N B¢ A°

Total B Be S

Conditional Probability

If ticks are a relevant explanation for CWD status, we should be able to determine the status of a deer just
by observing whether or not is has ticks. We might ask the question “What are the chances that a deer is
CWD positive given that we observed that it has ticks?”. To do this we would have to confine our view of
the table to only those deer that have ticks:

From here we would just have to treat the total number of deer with ticks to be our new sample space and

Ticks
CWD + 42
CWD — 78
Total 120

calculate the proportion that were CWD positive.

CWD + 42
— = —=0.35
Total 120
If we think back to our “general” contingency table:
Event B B¢ Total
A ANB | AN B¢ A
A° A°NB | A°N B¢ A°
Total B B¢ S
The formula for what we’ve calculated is:
P(ANB)

P(B)

Which is the exact formula for conditional probability.




A conditional probability of an event is a probability obtained with the additional information that
some other event has already occurred. In a sense we’re re-scaling our sample space to instead be a specific
event space and considering all of the possible outcomes of a separate event.

B P(A|B) A

We denote the probability of A conditional on B as P(A|B) which reads as “the probability of A given B”.

P(A[B) = P(;l(;)m

As a note: the use of A and B are arbitrary here, the structure of the formula is only based on the order of
the events inside the conditional.

P(AN B)

P(BIA) = =57

Using this definition of conditional probability, we can apply some basic algebraic knowledge to produce a
definition for the intersection of A and B.

P(AN B)

PAIB) = =55

P(AN B) = P(A|B)P(B)

This formula is sometimes referred to as the multiplication rule for intersections.



Independence
This is one the many instances where independence makes our lives easier. In terms of general probability,

events A and B are considered to be independent if the outcome of A does not affect the outcome of B and
vice versa.

With regard to conditional probability this means that the following are true:

P(A|B) = P(A)

P(B|A) = P(B)

We can leverage this to prove an interesting result about independent intersections. Given that events A
and B are independent:

P(A|B) = P(If(;)B) — P(A)
pay=" (];4(;)3 )

P(ANB) = P(A)P(B)

This is referred to as the multiplication rule for independent events.
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