Chapter 3.1 - Methodologies of Probability

“The probability is like the stick used by the blind man to feel his way. If he could see, he would
not need the cane, just as if we knew which horse runs faster, then we would not need probability
theory.” - Stanislaw Lem

Probability is a trivial concept that statisticians have turned into a grotesque beast of unfathomable com-
plexity. This is primarily for two reasons:

a. The average person is incapable of conceptualizing probability appropriately.

b. Statisticians needed job security.

If something doesn’t happen, it clearly had no chance of occurring. If something happens, it’s already
occurred so the chance was 100%. Obviously we can reduce this down to a binary outcome: Something
happens or it doesn’t. Meaning that all probabilities are some form of coin flip, and coin flips have 50/50
odds. All occurrences are 50/50 odds coin flips. O

In case it wasn’t apparent, that “proof” shouldn’t be taken seriously at all.

Why?

Why do statisticians study probability? So far all we’ve seen is graphical tools, summary statistics, and data
collection. But these are just the basic vocabulary of statistics, we now dive head first into the true science
of statistics.

Say you wanted to describe the cholesterol study data with summary statistics, like the mean:
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These lines are accurate to the data but inaccurate to anything outside of this study. Statisticians want
our results to be generalizable because this lets us spend less time analyzing experiments and more time
pretending to work. The basis behind studying probability comes from our addition of standard deviation
lines into this scatterplot:

Scatterplot of Age vs Cholesterol
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Probability allows us to answer the question, “How likely is it for a random person to fall within 0.8 standard
deviations of the average cholesterol from this study?”.

Basic Concepts of Probability

Probability: A number between 0 and 1 that tells us how likely a given “event” is to occur
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We denote the probability of some event, x, occuring as P(x). From here we can assign a value to P(z)
between 0 and 1 to describe the likelihood of event occurrence.

P(x) = The event cannot occur
P(z) = The event is as likely to occur as it is to not occur
P(z) = The event must occur

As P(x) gets very close to 0, it’s possible for the event to occurr, but so unlikely that we’d be surprised if
it did. For instance, it’s highly unlikely that a shark attack occurrs on any given beach in the U.S., but it s
possible:

x = {A shark attack on a beach in the U.S.}

P(x) ~ 0.00000008

As P(x) approachs 1, it’s not impossible for the event to occur although we’re very confident it should. Like
losing the lottery:

2 = {You lose the national lottery you bought a ticket for}

P(z) ~ 0.999999997

Gambling isn’t an advisable activity.

Probability Terminology

In order to formally study probability we need address some changes in vocabulary. Imagine you flip a fair,
two-sided coin twice. This act of flipping the coin twice is considered an experiment. While not completely
unlike the experiments we covered in Chapter 2 there’s still an important distinction to be made:

Experiment (in context of probability): An activity that results in a definite outcome where the observed
outcome is determined by chance.

What are the possible outcomes for this experiment? If consider the coin landing on it’s side to be an
impossible outcome, there are 4 possible results from this experiment:

Flip 1 | Flip 2
Heads | Heads
Heads | Tails
Tails | Heads
Tails | Tails

This list of possible outcomes is referred to as the sample space.

Sample space: The set of ALL possible outcomes of an experiment; denoted by S.



We can represent the sample space with tables, pictures, or notation. The sample space for the coin flip
experiment would be:

S = {HH, HT, TH, TT}

If we want to observe a small piece of our sample space, such as all of the outcomes that include tails, we
would refer to this as an event.

Event: A subset of outcomes belonging to sample space S.
Events are typically denoted by a capital letter towards the beginning of the alphabet:
e ie. A, B, C, etc.
The possible outcomes in an event, A, where tails shows up in one of the two flips would be:
A={TH, HT, TT}

Whereas the possible outcomes in an event, B, where only tails shows up would be:
B={TT}

Since there’s only one outcome from S in the event, B, this is considered a simple event.

Simple event: An event containing a single outcome in the sample space S

Meanwhile the event, A is considered a compound event.

Compound event: An event formed by combining two or more events (thereby containing two or more
outcomes in the sample space S).

This can be thought of as any event that has more than one outcome since every outcome in an event can
be deconstructed into it’s own simple event.

A = {At least one flip is tails} = {TH, HT, TT}

B = {Both flips are tails} = {TT}

C' = {The first flip is tails and at least one flip is heads} = {TH}




Probability Methods

When discussing probability it’s good to establish how we're assigning probabilities to events. There are
numerous methods for doing this but the majority of studies, papers, and analyses use one of the three we’ll
discuss below.

Subjective Probability: Probability is assigned based on judgement or experience.

o We refer to experts and ask them their opinion or observation regarding the probability of an event.
— A doctor assessing the chance of a patient recovering from a medical procedure

— A managerial team estimating the probability a project will achieve technical success

This probability may not be expressed in an actual number; instead, we may say “low”, “high”, “almost
certain”, etc.

Classical Probability: makes assumptions in order to build mathematical models from which prob-
abilities can be derived.

Suppose we want to put a probability on the event of observing “tails” in one flip of a coin. We might assume
the following:

e 2 possible outcomes: “heads” or “tails”

e The coin is “fair” (i.e., heads and tails have an equal chance of occurring)

Based on these assumptions we can develop the following model:

1
The probability of observing tails = P(tails) = 3

This is the simplest probability model, equiprobable outcomes. This model can be generalized so that any
experiment meeting the assumption of equal likelihood across outcomes can be modeled with it. Given any
event, A:

number of outcomes in event A

P(A) =

"~ total number of outcomes in S




Relative or Empirical Probability: The probability of an event is the proportion of times that the
event occurs.

This is a common method for assigning probability since we can apply it without knowing the “true”
probability of an event. In this case if we flip a coin repeatedly to observe the probability of it landing on
heads, the probability would be recorded as:

P(Heads) = {the proportion of all possible flips where the coin lands on "heads"}

e We could flip this coin many times (say 1000) and count the number of times it lands point up.

o This is like a simple random sample (SRS) from the population of all coin flips.

number of times "heads" is observed
1000

P(heads) ~

Law of Large Numbers

There will be many instances in this book where I'll be using something called “R”. R is a widely
used statistical scripting language that offers a variety of tools to make statistical experiments
and analyses possible. While this isn’t a book on R programming there are certain examples that
are made easier with its use. You (the reader) aren’t required to code along, but you're more
than welcome to.

Let’s flip a coin. In order to do this we’ll use a function that creates a 0.5 probability event with two possible
outcomes; 0 and 1. We can define “heads” as 0 and “tails” as 1 inside the program for now, to keep things
simple.

set.seed(73) # seed for reproducibility
result=ifelse(rbinom(1,1,0.5) == 0, "Heads", "Tails") # flip a coin once
cat (result)

## Heads

While we already know that the probability of heads is 0.5, if we were observing this from the empirical
probability viewpoint what would the probability of heads be?

number of times "heads" is observed 1 1

P(heads) ~ ==
(heads) number of times the coin if flipped 1

Now if we flip this coin 5 times, would this probability change?



set.seed(73)
result=ifelse(rbinom(5,1,0.5) == 0, "Heads", "Tails") # flip a coin five times
cat(result)

## Heads Heads Tails Tails Tails

2
P(heads) ~ 3~ 0.67

A side effect of empirical probability is that it doesn’t function very well under small sample sizes. Changing
the component of the code that returns an answer of “heads” or “tails” to instead add up all of the 1’s
that occur will tell us the total observations of tails. If we subtract that number from the total number of
tosses we’ll end up with our count of heads. So let’s flip this coin 1000 times, count up the number of heads,
calculate the probability, and plot out the observations of our experiment:

set.seed(73)

# this can also be done without the sum() function by using rbinom(1,1000,0.5)
result=1000-sum(rbinom(1000,1,0.5))

cat("Total heads:",result)

## Total heads: 512

512
P(heads) ~ —— =~ 0.512
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What we’ve observed is something called the “Law of Large Numbers”. As the size of our sample (i.e.,
number of experiments) gets larger and larger, the relative frequency of the event of our interest gets closer
and closer to the true probability.




Assume that a fair die is rolled (i.e., all outcomes are equally-likely)

. What is the sample space?

. What’s the probability of rolling a 5?7

. What’s the probability of rolling an even number?

. What’s the probability of rolling a number less than 37

An automobile insurance company divides customers into three categories: good risks, medium
risks, and poor risks. Assume that of a total of 11,217 customers, 7792 are good risks, 2478 are
medium risks, and 947 are poor risks. As part of an audit, one customer is chosen at random.

. What’s the probability that the customer is a good risk?

. What’s the probability that the customer is not a poor risk?
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