Chapter 2.2 - Visualizing Correlation

“Correlation doesn’t imply causation, but it does waggle its eyebrows suggestively and gesture
furtively while mouthing ‘look over there” - xked

Every year Chicago experiences an increase in homicides at the same time as ice cream sales increase. This
is a morbid (and tired) example of a beautiful statistical concept: correlation.

Correlation

Violent crime increases as it gets hotter outside. There’s a lot of rationale behind this but the simplest one
I can provide is that it’s hard to commit murder when you're shivering indoors wrapped in blankets. Ice
cream sales also increase as it gets hotter outside. (Hopefully) That one makes sense on it’s own.

Despite the fact that people aren’t more inclined to shoot their neighbor when they’ve got a Choco Taco in
their hands, the data paints that picture. It’s all a product of each variable, homicides and ice cream sales,
having a shared cause for their increased prevalence.

This is the general basis behind correlation: two or more variables that have some shared trend due
to unknown causation or a shared cause.

Correlation is one of our most powerful tools in statistics because we can use a relatively small amount of
evidence to build a foundation upon which we can develop a full scientific story. Variables being correlated
doesn’t imply they’re causative, but with a little bit of scientific exploration we can explain the correlations
we see across different variables.

Scatterplots

The fundamental goal of applied statistics is to describe the relationship between variables measured from a
sample of individuals representative of a greater population. So far we’ve looked at the relationship within
single variables, but rarely are we ever concerned about making inference from just one variable.

Consider a sample of 10 patients, of varying demographics, all who received testing of their cholesterol levels
during their last visit with their doctor. There are two variables for each individual in the sample:

X = Patient Age Y = Serum Cholesterol Level
For the i*" patient, we’ll denote it’s observed values as:

o x; = the age of the i*" patient in years

e y; = the serum cholesterol level of the i'" patient in mmol/L



Age 41 | 62 | 54 | 52 | 40 | 64 | 52 | 61 | 65 | 44
Cholesterol | 235 | 231 | 286 | 196 | 167 | 263 | 204 | 307 | 360 | 226

Our data is a collection of ordered pairs; two values from the same individual. We sometimes refer to
data consisting of ordered pairs as bivariate data, although this language is more common in mathematical
statistics topics like distribution theory. We can notate these variables in the form of a table or a vector; a
collection of points.

xr = (Il, T2, ...I’g,ﬂ?lo)/

Y= (y1,y2,---x9,y1o)’

Then we can consider the data for any given individual to be a coordinate:

($17y1) = (417 235)a EE) ($107y10) = (447 226)

This concept of treating ordered pairs as coordinates isn’t just a coincidence. We can plot these ordered
pairs on an x and y coordinate plane by fiddling with the scale for each axis:

Scatterplot of Age vs Cholesterol
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With this visualization alone we can ask ourselves real statistical questions: How are x and y related in this
data? What happens to our cholesterol as we get older? How can we best describe the relationship between
x and y?

Instinct (or prior knowledge) might lead us to draw a line throw the plot to represent the trend in the data.
When we can reasonably represent the relationship between two variables with a line we refer to it as a
linear association.




Scatterplot Definitions

As always, it’s important to develop vocabulary as we’re improving our familiarity with a language. Scat-
terplots have their own cluster of vocabularies; we’ll be sticking to a simple set for now.

For any two variables we can define their relationship as a:

o Positive association if large values of one variable are associated with large values of another

« Negative association if large values of one variable are associated with small values of another
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Correlation Coefficient

Describing the relationship between two variables via visualization is simple, but it’s not very convenient
or reliable. Avoiding ambiguity is a good goal overall but it’s especially important here. The correlation
coefficient is statistics’ solution to this problem.

Correlation coefficient: Numerical measurement of the strength (and direction) of the linear relationship
between two quantitative variables

The correlation coefficient can be a cumbersome concept mathematically but as usual we’ll be developing it
piece by piece. We'll start with our cholesterol data:

Age 41 | 62 | 54 | 52 | 40 | 64 | 52 | 61 | 65 | 44
Cholesterol | 235 | 231 | 286 | 196 | 167 | 263 | 204 | 307 | 360 | 226




Let’s continue to consider X = Age and Y = Cholesterol. In any data analysis it’s best to start with the
basics and calculate mean and standard deviation.

x Y Sz Sy
56.40 | 242.70 | 10.89 | 37.97

We can visualize the data on a scatterplot once again, and put segmented lines for the mean of each variable:

Scatterplot of Age vs Cholesterol
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We'll add in 1 standard deviation for each variable with dotted lines to get an idea of what’s going on with
the data:

Scatterplot of Age vs Cholesterol
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Currently, both variables (age and cholesterol) have different units and different scales. It’s entirely possible
to make comparisons between them using these units and scales as they are, but it’s much more convenient to
get them into the same format. This is easily done by standardizing them (a.k.a. converting both variables
to z-scores).



Scatterplot of Age vs Cholesterol

: ° v
o .
o : ‘ ©
° | °
[T9)
CS | .
S | [ ]
L o |
1] o . ‘
[}
= [ ]
2 [ °
o - .
5§ o I
[ J
| |
o
= |
! T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0
Age
We should recognize a few things right away:
z=y=0

S;=58y,=1

That is, if we consider the new standardized values to be the same variables (which we will for now). All
that’s changed in our scatterplot is the values in the X and Y axis’, everything else is in the same exact
position.

If you were to take each variables “original” values and multiply them together (& X y), and average
them you would have calculated the covariance for the un-standardized variables. Covariance is (loosely) a
measurement of the association between two variables, however statisticians tend to only concern themselves
with the sign of covariance (the direction of the association). When we standardize the data as we’ve done
here, covariance becomes something far more interpretable.

Covariance has a more involved (and accurate) proof behind it than the one being shown here. It should
be pointed out that a proper proof of it’s derivation requires the use of trigonometry, the annoying person
showing up at every party despite nobody knowing who continues to invite them. I would sooner burn this
text and destroy all evidence of its existence before I allowed trigonometry to formally involve itself in an
example. Hence, we’ll make some wild over-simplifications and proceed as if they’re accurate.

We have two vectors of z-scores, one for « and one for y. We’ll multiply these vectors by one another and
add the values up:

D (xxy) =4.414

We can now average this value, but once again we’ll wave our hands and use the n — 1 trick to adjust for
bias.

72(33 X y) =0.49
n—1



This is the correlation coeflicient, r, and is a rough measurement for linearly associated data on the strength
and sign of their relationship. In this case the association is a weak(er) positive linear relationship, which
tracks since Y is generally increasing as X is increasing (and vice versa) but they’re not perfectly set on a
line.

Scatterplot of Age vs Cholesterol
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We'll recap with the proper formula below:

Given n ordered pairs (z;,y;), with sample means z and ¥, sample standard deviations s, and s,; the
correlation coefficient r is given by:

Properties of the Correlation Coefficient

1. The value is always between —1 <r <1

e If r =1, all of the data falls on a line with a positive slope.
e If r = —1 all of the data falls on a line with a negative slope.

e The closer r is to 0, the weaker the linear relationship between
z and y.

If » = 0 no linear relationship exists.

Statisticians generally consider values between 0 and £0.6 to
be weak relationships, however this isn’t a perfect rule.

2. The correlation does not depend on the unit of measurement for
the two variables

e z is years and y is mmol/L, but they can still have r calcu-
lated.

3. Correlation is very sensitive to outliers.

¢ One point that does not belong in the dataset can result in a
misleading correlation.

e Always plot your data!

4. Correlation measures only the linear relationship and may not (by
itself) detect a nonlinear relationship

e A nonlinear relationship won’t always show up as r = 0 so
you should be aware of what your data looks like whenever
analyzing correlation.




Boxplots

Another useful visualization for assessing data is the boxplot. While we’re going to start by introducing
univariate (one variable) boxplots, we're building towards using this graphic as a way of assessing multiple
variables simultaneously.

A boxplot (or “box-and-whisker” plot if you’re old like me) is a graphical display of a five number summary.

Given the five-number summary of the FMD data, the associated boxplot is shown below:

Min | Q; | Median | Q5 | Max
90 | 124 165 182 | 196
T T T T T T T T T T T
90 100 110 120 130 140 150 160 170 180 190 200
I I I
| | |
Min : Max:

90 100 110 120 130 140 150 160 170 180 190 200

Each component of the five number summary is on this boxplot (showcased below) but not all boxplots are
made equally. It’s not uncommon to remove the “whiskers” (min and max) for the purpose of comparing
many boxplots in one figure.




How to Construct a Boxplot

1. Find the 5 values in the five number summary

a. Compute the IQR
b. Find the upper & lower bounds for outliers

2. Draw a number line to represent the scale
3. Above the number line, draw a box with one end at Q; and the other at Q4
a. Draw a verticle line across the box at the median

4. Draw horizontal lines (“whiskers”) from the box to the smallest and largest values within the upper &
lower outlier bounds

5. Plot observations outside the bounds with a “star” (*) to identify them as outliers

Skewness and Boxplots

Skewness is a troubling topic, as it really doesn’t matter that much. Higher level courses in applied statistics
care about shape and visible skew just enough to make assumptions about the data and some more niche
courses in mathematical statistics will enlighten students to the reality that skewness is completely different
from what we’re taught in introductory classes.

Still it’s important to learn a skill even when we suspect it will become obsolete— even if the rational is
simply to understand the history of our science. Skewness of boxplots mimics that of histograms directly.

This would be negatively-skewed:




Positively-skewed is the opposite:

Approximately symmetric:

It should be noted that not all boxplots will use the same symbol to denote outliers. In the boxplot below
T’ve used circles, but stars and crosses are just as common.

10



Comparative Boxplots

When we’re working with multiple variables that are on the same scale we can make the task of comparison
trivial by using boxplots. While histograms and scatterplots rule the graphical market for observational

studies, boxplots have a monopoly in designed experiments.

We can come up with the reasoning for this easily, since an observational study only looks at phenomena
as they naturally occur and a designed experiment is a complete control of nature. When the scientist is in
charge of what happens they tend to go out of their way to make sure everything’s similar units and scales.

Consider the data below of annual rainfall data (in inches) in LA during February: 1930 — 1974

Year | Rainfall || Year | Rainfall | Year | Rainfall || Year | Rainfall || Year | Rainfall
1930 0.45 1939 1.13 1948 1.29 1957 1.47 1966 1.51
1931 3.25 1940 5.43 1949 1.41 1958 6.46 1967 0.11
1932 5.33 1941 12.42 1950 1.67 1959 3.32 1968 0.49
1933 0.00 1942 1.05 1951 1.48 1960 2.26 1969 8.03
1934 2.04 1943 3.07 1952 0.63 1961 0.15 1970 2.58
1935 2.23 1944 8.65 1953 0.33 1962 11.57 1971 0.67
1936 7.25 1945 3.34 1954 2.98 1963 2.88 1972 0.13
1937 7.87 1946 1.52 1955 0.68 1964 0.00 1973 7.89
1938 9.81 1947 0.86 1956 0.59 1965 0.23 1974 0.14

We can compare the data from 1930 — 1974 with data from 1975 — 2019 using boxplots:

1975 - 2019

1930 - 1974

5

10

Rainfall (inches)

Consider the following questions as an exercise:

1. What can you say about the shape of each dataset?

2. In which time period was the amount of rainfall generally greater?

Years

ES 1930- 1974
ES 1975 - 2019

15

3. On the whole, the rainfall was more variability in which time period?

11
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