Chapter 1.4 - Measures of Spread

“It’s easy to predict what most people would do, but very hard to predict what any one person
would do.” - Unknown

The later chapters of this textbook will thoroughly establish what I consider to be the only philosophical
truth of Statistics: The entire science of Statistics is a pointless exercise in an ideal world. The problem is
that we live in an imperfect world with insufficient technology and incomplete mathematical theory. Thus,
statistics is the most efficient science we [humans] can pour our lifespans into.

For example, as much as it’s painful to admit K-State does lose football games. In a perfect world we would
have a lineup of Tyler Locketts, Daren Sproles’, and Jake Waters’ all linked to a Bill Snyder hive mind.
Since (for inexcusable reasons) they can’t achieve this, their distribution of seasonal wins looks like this:

K-State End of Season Wins (2004-2017)
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When we look at this data we can see a certain spread to it. Just as the center can be described numerically,
so can the spread. Using both of these numeric descriptors is sometimes more than enough to describe the
entire shape of a data set.

But why would we care about describing the spread of data? I'd first ask whether or not it’s fair to make
inference from the center alone? Is the mean resistant? Is the median representative of all the data? Does
the mode say anything about outliers?

Spread is an important metric for understanding the differences or variation in data. These differences
are hidden when we only consider the center, and the trend of a sample is hidden when we only consider
the spread. So while we go over the methods of describing variation in data it’s important to think through
what can be added to complete the picture of our data (without ever visualizing it on a graph).




Range

When looking at the mean and median for the smoking data it was clear that the median described the
majority of participants much better than the mean.

Participant Reported Number of Cigarettes Smoked Daily
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But there’s a fundamental problem with exclusively considering the median here, we lose almost all of the
information and nuance contained in the the data. A measure of spread can help regain some of that
lost information, but as statisticians are communicators first and scientists second we should look to use a
measure that’s easily explained.

The simplest measure of spread at our disposal would be to report lowest and highest values in our data.
By doing this we allow the audience to make inference about the “in-between” of our data without looking
at it.

Minimum | Median | Maximum
0 0 70

It seems redundant to place 0 in that table twice, right? As it turns out, it would be redundant to place
the minimum and maximum in that table regardless of their values. We can turn them into a single value
without losing any information by calculating the range.

Range: Difference between the largest and smallest data value

Range = Maximum — Minimum

Our table suddenly has a blank space that we could use to give more context to our data!

Mean | Median | Range
10 0 70




With every measure/metric there’s good and bad. Range does let us look at spread, but its difficult to
differentiate between data sets with range alone:
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These two data sets could have the same range and mean, but does that make them the same data? It would
be helpful to use a measure that can clear up these differences between data sets. How could we measure
this to begin with?

Consider a simple experiment measuring the aboveground biomass of two different clover species:
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Species B has smaller spread, more of the data is clustered around the mean. Meanwhile species A has
larger spread, more of the data is far from the mean. This isn’t just a coincidence, it’s a distinct feature
of spread in data. What we can do to better describe the nuance of spread is use the mean as a reference

point.




Variance

Let’s start with the smoking data and it’s mean:

Participant Reported Number of Cigarettes Smoked Daily
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And “re-define” the mean as 0, then adjust every other data point to the new mean:

Number of Cigarettes Smoked Daily Relative to the Mean
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We haven’t accomplished anything productive. The reason for this is because our data has only shifted. The
value of mean, median, and mode may have changed but their location hasn’t. More importantly the data
is now complete nonsense; how can someone smoke negative numbers of cigarettes?



If we focused on absolute difference between a data point and the mean we would be able to see how different
the data is from the center, which would be much more interpretable, so let’s try that. All we have to do is
make all of our negative values into positive ones.

Absolute Difference in Cigarettes Smoked Relative to the Mean
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The data has been fundamentally changed, as the new title suggests. The mean of this data can now be
interpreted as the average difference in cigarettes smoked between participants in the original data set, what
a convenient statistic!

Unfortunately, we can’t use this specific method. While absolute values are graphically simple and intuitive
in explanation, they’re absolute demons in calculation. Statistics has only recently enjoyed the advantages of
computers and numerical calculus, which means most of the standard practices in statistics revolve around
methods that are analytically tractable. That is to say, they can be calculated to a final solution by hand.

Fortunately, the fix for this problem is quite simple. Instead of taking the absolute value of the differences,
we’ll just use the elementary concept of multiplying two negatives and square the differences:

Squared Difference in Cigarettes Smoked Relative to the Mean
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While it looks much more disasterous on a graph than the absolute differences, squared differences are
significantly nicer to calculate by hand. Another important note is that the mean needs a slight nudge to fix
a problem called “bias”. A detailed explanation and proof would be a topic for a higher level, mathematical
statistics textbook. For the purposes of this text, we simply need to remember that in place of dividing the
summation of these squared differences by the total sample size, n, we divide by n — 1.

What we just did was a rudimentary “proof” (to use the term very loosely) of the measure of center known
as variance.

Variance: The average squared difference of data from the mean

By definition, variance should never be negative. It is bounded between 0 and co. Larger variance means
more variability. As variance shrinks to 0 our data set becomes a table of the exact same value.

Given:
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Sample variance (denoted s?) is defined as:

Again, that n — 1 component seems sneaky and insignificant but it’s vital to ensure that our estimate of
sample variance is sound.

Similarly:

N
1
Population mean = y = v Z z;

i=1

Population variance (denoted ¢2) is defined as:
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We can get away with using population size (N) as is, without subtracting one, due to the nature of “bias”
only concerning itself with the difference between our estimate and the truth. We consider any parameter
calculated directly from a population to be “the truth”.

Remember that statistics is about making inferences about a population parameter using sample statistics

In practice we almost never directly calculate population variance, rather we use sample variance to
estimate population variance




Standard Deviation
When we made the swap from absolute difference to squared differences we gained analytical simplicity

in exchange for messy interpretation. The units for our smoking example are “Cigarettes®”, which should be
confusing. What shouldn’t be confusing is the solution to this problem:

1/ Cigarettes® = Cigarettes

We’ve successfully derived the last measure of center discussed in this chapter, standard deviation.
Standard Deviation: The average difference between the data and the mean.

The formula for standard deviation is extremely direct when we consider variance to be a complete variable
(rather than a separate, larger formula):

Vo2 = o — Population Standard Deviation

Vs =s— Sample Standard Deviation

The purpose of standard deviation is primarily to restore the original units of the data that we calculated
variance with. However standard deviation is still used throughout the majority of equations in statistical
inference, so don’t fool yourself into brushing it aside as nothing more than a convenient tool for communi-
cation..

Empirical Rule

Some shapes of data are common enough that we attach names and discover generalized trends with them.
One of the more (if not most) famous shapes is bell-shaped. Approximately symmetric with a modal peak
in the center.




The data doesn’t need to be flawlessly bell-shaped to be described as bell-shaped, for example this data on
heart rates could be considered approximately bell-shaped:

Subject Maximum Heart Rates Achieved
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One of the many reasons statisticians are so keen on bell-shaped data is because of a fun phenomenon known
as the empirical rule (also known as the 68-95-99.7 rule).

The Empirical Rule

For a population that has an approximately bell-shaped distribution:

Approximately 68% of the data is within ONE standard deviation of the mean
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Approximately 95% of the data is within TWO standard deviations of the mean
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Approximately All or almost all of the data is within THREE standard deviations of the mean

w— 30

~ 99.7 — 100% = {
W+ 3o



Empirical Rule

68% of the data

95% of the data

99.7%-100% of the data

It’s convenient to see how this rule comes about, let’s look back at the heart rate data.
Using some light programming (since n = 303 is a bit tedious to work with by hand) we can find the mean

and standard deviation of the data to be z = 149.65 and s = 22.91 respectively. If we count up and show
the data points that are between 126.74 and 172.56 (% =+ s):

Subject Maximum Heart Rates Achieved (1 SD)

52
2 48 200/303 = 0.66
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Since the data isn’t a perfect bell-shape we’ll have some error between our calculated proportion and the
empirical rule, but if we go ahead and check 2 and 3 standard deviations:

Subject Maximum Heart Rates Achieved (+2 SD)
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We can see the empirical rule is a very good approximation of reality. It’s also easy to see how quickly the
rule falls apart when the data doesn’t meet that bell-shaped standard:

Participant Ages
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