Random Variables

STAT 240 - Fall 2025

Robert Sholl

Definitions

Random Variable

A rule for assigning a numeric value to each outcome of a random experiment.

 $X = \{\text{The number of heads in three coin flips}\}$

 $Y = \{\text{The sum of two dice rolls}\}\$

EXPERIMENT: ANY TRIAL WHERE OUTCOME IS DETERMINED BY CHANCE

Support

The set of possible values a random variable can be.

3 coins
$$S_X = \{0, 1, 2, 3\}$$

$$S_Y = \{2, 3, \dots, 11, 12\}$$

Notation

- X represents the proposed random variables
 - It has possible values, but no actual value
- ullet represents a realization of the random variable X

 $P(X = x) \Rightarrow$ The probability that r.v. X realizes to x

 $P(X > x) \Rightarrow$ The probability that r.v. X realizes greater than x

Discrete Random Variables

Distribution

REPRESENT

Formally: The function that dictates the generation and \mathcal{L} R.V. moments of a random element. VARIABLE

- Think of all of our measures of center, spread, and position
- Those *uniquely* identify a grouping of data
- Something fundamentally controls what those measures should be

Discrete Distributions

- Discrete random variables have mass to their probability
- Probability mass functions satisfy the following

$$0 \le P(X = x) \le 1$$

$$\sum_{x} P(X = x) = 1$$
Required

SUFFICIENT: A FEATURE

Moments

Measures related to the shape of a function's graph

We care about two moments right now

$$\mathbb{E}X \Rightarrow \text{Expectation}$$

$$VX \Rightarrow Variance$$

Discrete Expectation

For discrete random variables:

$$\mathbb{E}X = \sum_{x} xP(X = x)$$

- The sum of all values of the r.v.
 - Weighted by their probabilities

Discrete Variance

For discrete random variables:

$$\mathbb{V}X = \sum_{x} (x - \mathbb{E}X)^2 P(X = x)$$

- The sum of the squared differences between all values and the expectation
 - Weighted by their probabilities

Inference MEAN

- Expectation: long-run average, as $n \to \infty$ the expectation is the center of the r.v.
- Variance: long-run spread, as $n \to \infty$ the variance is the squared spread of the r.v.
 - We can make variance more interpretable (and useful overall)

$$\sqrt{VX} = \sigma_X \quad \text{fix units}$$

Standard deviation functions the same as before

In Practice

Let X represent the number of caffeinated beverages anyone in the class consumes daily

- Determine the distribution of X
- Find the expected value of X
- Find the variance and standard deviation of X

$$EX = \frac{1}{2} \times P(X = X)$$

$$O(-15) + 1(-40) + 2(-21) + 3(-09) \qquad 1.78$$

$$+ 4(-12) + 5(0) + 6(0) + 7(-03)$$

$$\bigvee X = \frac{1}{4} (X - \mathbb{E} X)^2 P(X = X)$$

$$((0-1.78)^{2}(.15))+((1-1.78)^{2}(.40))+((2-1.78)^{2}(.21))+$$

$$((3-1.78)^{2}(.09))+((4-1.78)^{2}(.12))+((7-1.78)^{2}(.03))$$

$$VX = 2.27$$

BEFORE BONUS & Quiz Exam X = 65 MED = 68 4 BIASED S = 13.5LY CORRECT ADD Bonus 1) WHY YOU GOT IT WRONG X = TO MED = TZ 2) WHY IS II WRONG X 5 = 15.5 3) WHAT'S RIGHT 4)WH4

LITTER SIZE 2345

FREQ 1116 =30 EXERCISE: SI

REL. FREQ
$$\frac{1}{30}$$

PROBLEMS: (

FREQ: = REL. FREQ; $\frac{1}{2}$ = 1

CORRELATION

SAMPLE \rightarrow STATISTICS

 $X = (2*1)*(3*1)*(4*1)*(5*6)$
 $X = \frac{1}{2}(X; -X)^2$

AVERAGE OF TOTAL

SQUARED PIFFER ENCE

 $X = X = X = X$
 $X = X = X$
 $X = X = X = X$
 $X =$

EXERCISE: SIMPLE PROBLEMS: COMPLEX

CORRECATION = CAUSATION SAMPLE -> STATISTICS -> PARAMETERS POPULATION

Your Turn

- Determine the distribution of Y
- Find the expected value of Y
- Find the variance and standard deviation of Y

Continuous Random Variables

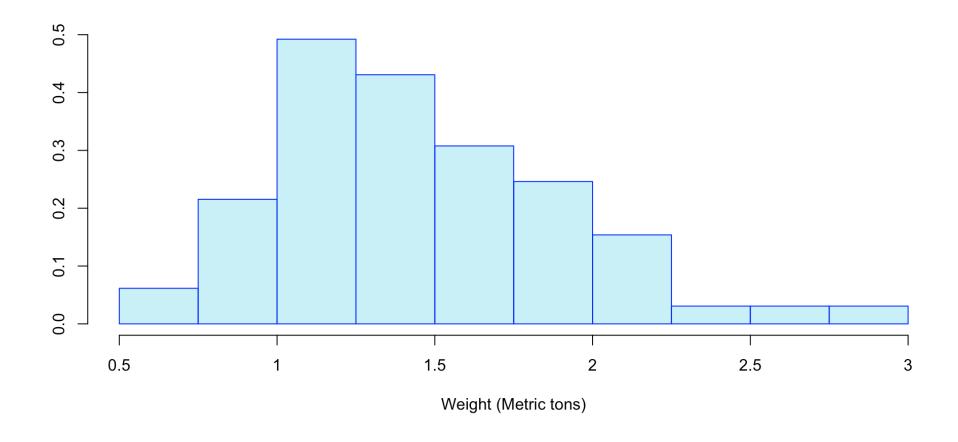
Definition

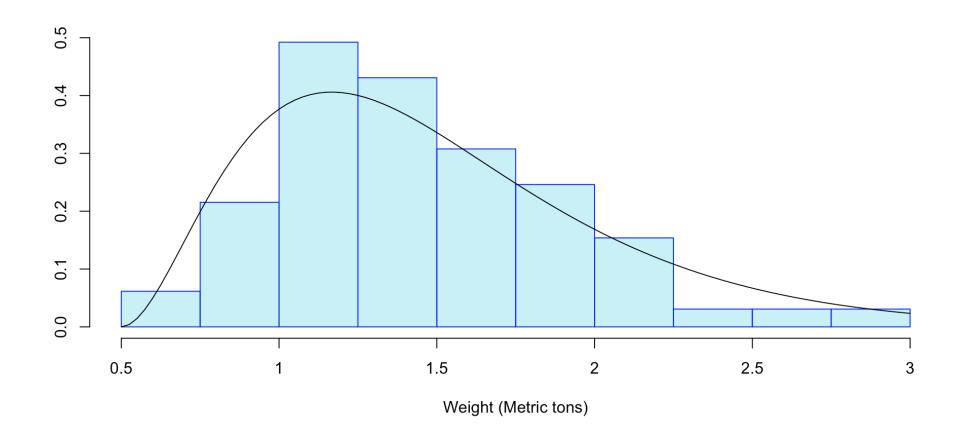
Continuous random variable: The **support** consists of all numbers in an interval of the real number line and are uncountable infinite.

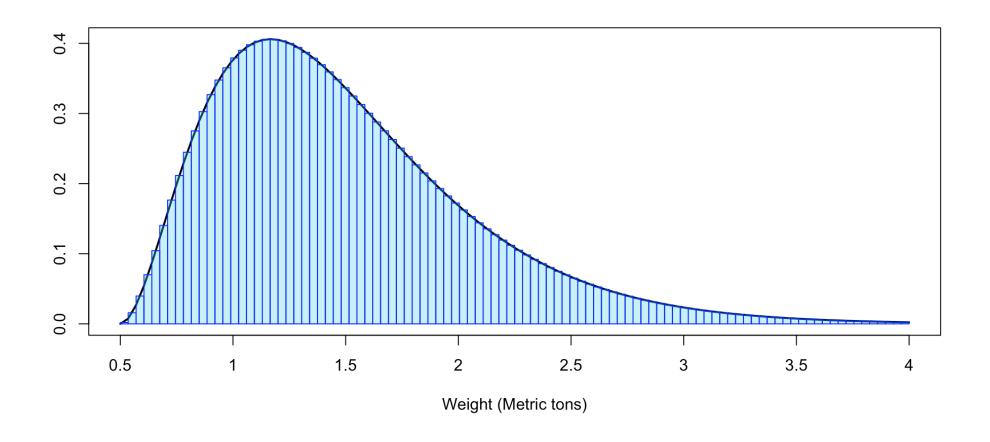
Let $X = \{\text{the body mass of a dairy cow}\}$

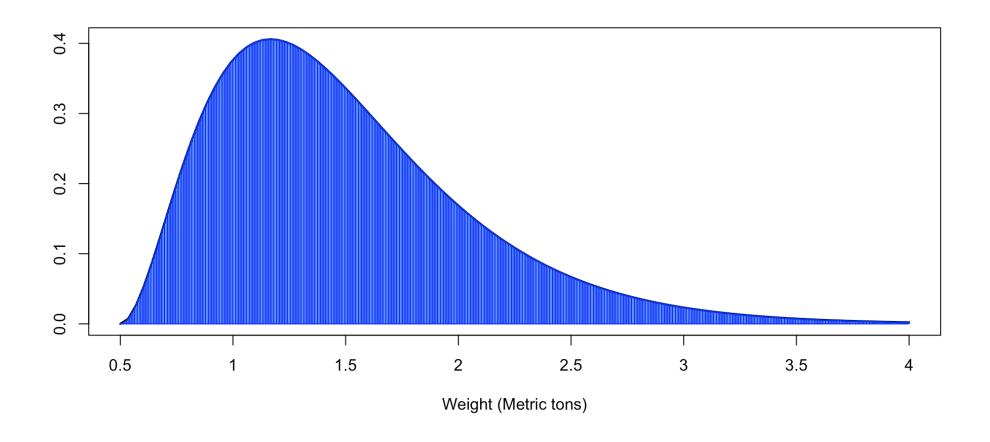
$$S_X = (0, \infty)$$

$$S_{\partial} = \begin{cases} 1, 2, \dots \end{cases}$$









Continuous Distributions

- Continuous random variable probabilities are discussed as densities
- Probability density functions must satisfy similar rules to PMFs
 - There's an issue though

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

$$0 \le \int_{\text{ithub.io/stat240_f25}}^{b} f(x) dx \le 1$$

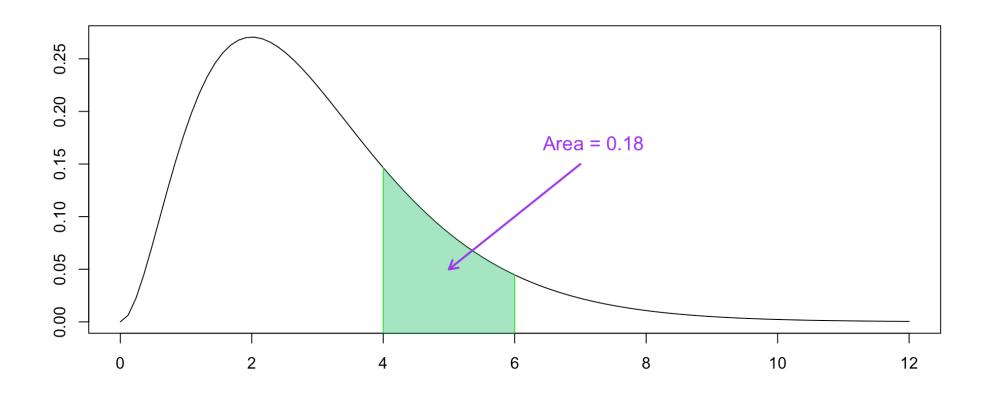
Probability Density

By definition continuous probabilities are the *area under* the curve between two values within the distribution.

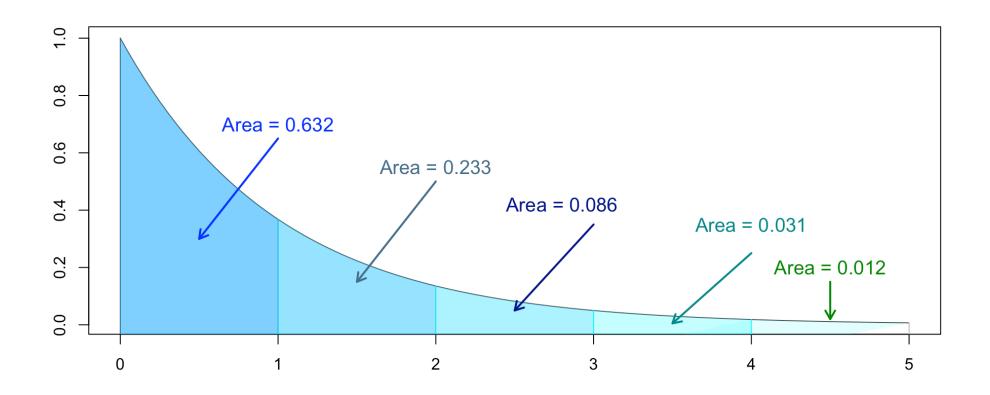
I have two rules for my class:

- 1. I won't invite the formal practice of calculus into my classroom
- 2. I'll burn at the stake before I use trigonometry

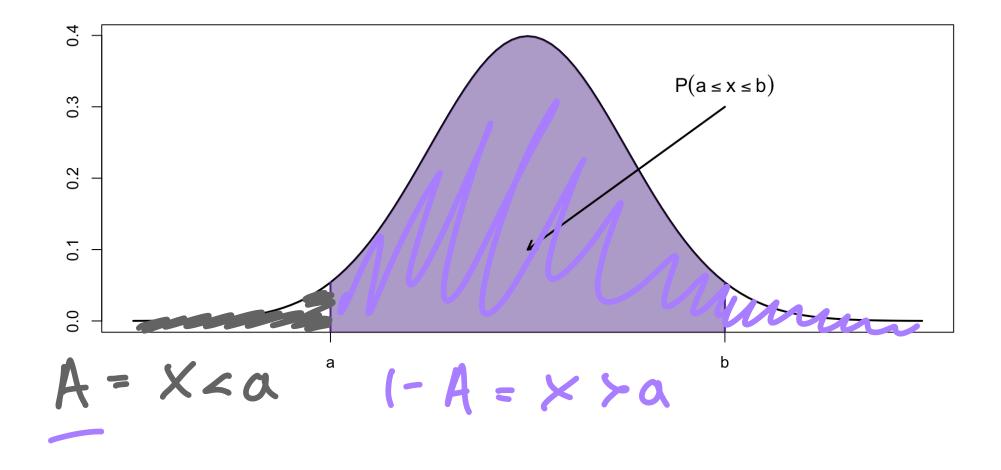
Probability Density



Probability Density

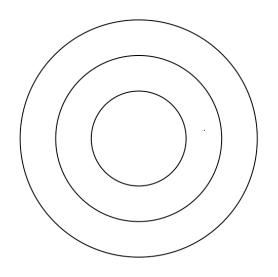


Continuous Probabilities

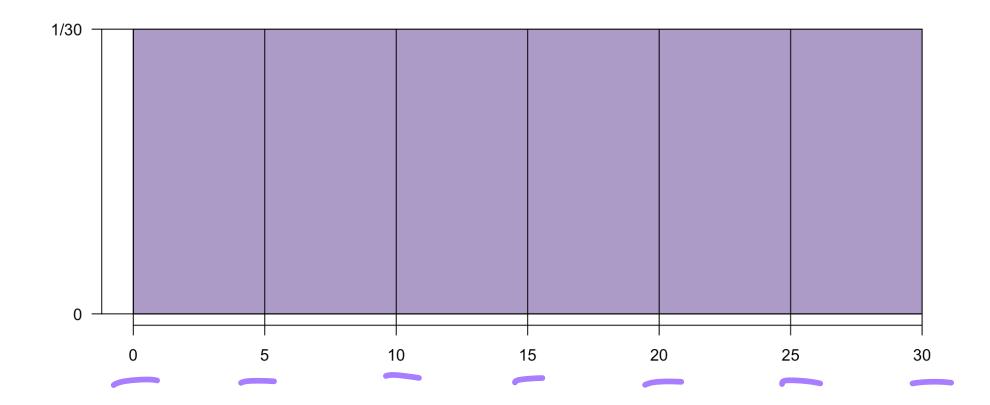


Equality

$$P(X = x)$$



Uniform Distributions



Moments

EXPECTED VALUE

4 GAMBLER'S RUIN

$$P = \frac{1}{4} = .25$$

$$\mathbb{E}X = \int_{-\infty}^{\infty} x \, f(x) dx$$

$$\mathbb{E}X^2 = \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$\mathbb{V}X = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

Alternate Methods

If you take STAT 341 (Biometrics II) you'll have to be able to calculate these things. But that class doesn't require advanced calculus.

- Sample interpolation
 - Guess exclusively from samples
- Numerical Quadrature
 - Draw boxes underneath the curve and calculate their areas
- Monte Carlo Simulation

Distribution Theory

Another alternate option would be to calculate everything once and then *force* the data to look like our calculations

- This is the motivation behind the field of Distribution
 Theory
- There's three important distributions we'll talk about:
 - Symmetric curves → Normal ←
 - Coin flips → BERNOULLI
 - Uniform bars → UNIFORM

Go Away

1) WHY YOU GOT IT WRONG

7) WHY IS IT WRONG 3) WHAT'S RIGHT 4) WHY

